Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Therapy Method For The Treatment Of Brain Tumors

23.05.2011
The Fraunhofer Institute for Cell Therapy and Immunology IZI and the American company Northwest Biotherapeutics Inc. are cooperating in the development of production processes and establishment of an innovative therapy method for the treatment of glioblastomas (brain tumors) in Europe.

Northwest Biotherapeutics has developed an autologous (the body's own) “DCVax®” immunotherapy for various types of cancer. In the USA, the company is already conducting clinical trials for the treatment of glioblastomas and other types of cancer. Such immunotherapies for cancer are beginning to succeed after many decades of research and development. DCVax® is one of the leading technologies at the forefront of this new approach to cancer treatment.

In order to make this DCVax® therapy also available to patients in Europe, the company has now entered cooperation with the Fraunhofer IZI. The initial phase of this cooperation comprises adapting the production processes to European regulations and standards, implementing them in the Fraunhofer IZI's facilities and comprehensive quality management system and obtaining the required official authorizations. Later on, the clinical trial products are supposed to be provided by the Fraunhofer IZI.

The current methods for the treatment of glioblastomas are limited and do not yield the desired success: Patients typically only live for about 14 months after diagnosis. Treatment options are restricted to surgical intervention, irradiation and chemotherapy, which are all associated with considerable risks and side effects. The autologous immunotherapy DCVax® Brain is now expected to provide treatment with improved therapeutic success (potentially adding years of survival) and attenuated side effects.

The autologous immunotherapy DCVax® Brain is based on dendritic cells, which play a key role in the regulation of the immune system. As tumor tissues develop from the body's own cells, the immune system often does not recognize them as foreign tissues and therefore does not attack them. In the DCVax® method, the dendritic cells are primed to specific antigens (bio-markers) that exist on the tumor cells. Consequently, the modified cells stimulate the T cells, the B cells and antibodies, and other agents of the immune system to combat the corresponding tumor cells.

The initial step is the isolation of immune cells (monocytes) from the patient's blood, followed by their cultivation and maturation into dendritic cells in the laboratory. In this process, the cells are co-incubated with fragments of the patient's tumor and primed to the corresponding specific tumor antigens. Several injections of the DCVax® dendritic cells thus generated will stimulate the patient's immune system to combat all tumor cells that bear the corresponding tumor antigens on their surface. This technology offers an important new approach to treating cancer, and is expected to be applicable to all cancers.

contact
Dr. Gerno Schmiedeknecht
Phone +49 341 35536 9705
gerno.schmiedeknecht@izi.fraunhofer.de
The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society. At present, the Fraunhofer-Gesellschaft maintains more than 80 research units in Germany, including 60 Fraunhofer Institutes. The majority of the more than 18,000 staff are qualified scientists and engineers, who work with an annual research budget of €1.66 billion. Of this sum, more than €1.40 billion is generated through contract research.

The Fraunhofer Institute for Cell Therapy and Immunology IZI is member of the Fraunhofer Group for Life Sciences. Its objective being to find solutions to specific problems at the interfaces between medicine, life sciences and engineering for partners active in medicine-related industries and businesses. The Institute’s core competencies are to be found in regenerative medicine, or more precisely in cell-therapeutic methods of regenerating non-functioning tissue and organs through to the biological substitution with tissue cultivated in vitro (tissue engineering). In order for the living organism to accept the tissues without any difficulty, it is necessary to study cellular and immunological defense and control mechanisms and take these into account during process and product development. These core competencies entail a multiplicity of tasks to be solved by new products and processes. The Institute works especially closely with hospital institutions, performing quality tests and clinical studies on their behalf. Additionally it also provides assistance in obtaining manufacturing licenses and certifications.

Fraunhofer Institute for Cell Therapy and Immunology
Press and Public Relations
Jens Augustin
Perlickstraße 1
04103 Leipzig
Germany
Phone +49 341 35536-9320
Fax +49 341 35536-8-9320
jens.augustin@izi.fraunhofer.de

| Fraunhofer-Institut
Further information:
http://www.izi.fraunhofer.de

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>