Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative motion evaluation tool saves patients with back pain X-ray radiation exposure

10.01.2014
Undergraduate students create, patent, market breakthrough technology

Those have undergone extensive back surgery and need repeated X-rays to monitor their progress may soon have access to a new technology that skips the X-rays and repeated radiation exposure, opting instead for an innovative, noninvasive, non-X-ray device that evaluates spinal movement.

The technology was created and patented by two engineering undergraduate students who recently formed their own company to market the device.

The paper describing the technology appears in the current special issue of Technology and Innovation- Proceedings of the National Academy of Inventors®, and was presented at the Second Annual Conference of the National Academy of Inventors® hosted by the University of South Florida, last February 21-23, 2013.

“Surgical treatment is inevitable for some of the 80 percent of Americans who at some point in their lives suffer from back pain,” said Kerri Killen of Versor, Inc. who, along with Samantha Music, developed the new technology while they were undergraduate students at Stevens Institute of Technology in New Jersey. “We developed an evaluation device that uses battery powered sensors to evaluate spinal motion in three-dimensions. It not only reduces the amount of X-ray testing patients undergo but also has the potential to save over $5 billion per year nationwide in health care costs.”

According to co-developer Music, there are 600,000 spinal surgeries every year in the U.S. with an annual exposure of 2,250 mrem of radioactivity per patient before and after surgery. The “electrogoniometer” they developed can be used by surgeons prior to patient surgery and after surgery and also used by physical therapists to further evaluate the progression of a patient’s surgery. The technology can also be used in other orthopedic specialties to reduce both costs and eliminate X-ray exposure.

“The electrogoniometer contains three rotary potentiometers, which are three-terminal resistors with a sliding contact that forms a voltage divider to control electrical devices, such as a rheostat. Each potentiometer measures one of the three spinal movements,” explains Music. “It also contains a transducer—a device that converts a signal in one form to energy of another form—to measure the linear displacement of the spine when it curves while bending.”

The developers add that the device is “easy to use” and requires minimal training for the health professional end-user. The vest-like attachment to a patient eliminates the need for any other special equipment and can be used during a routine clinical evaluation. “It is comfortable for the patient and efficient, providing immediate and accurate results,” they add.

An additional use for the device, they said, could be for measuring movement spinal angles and could be used to determine when an injured worker might be able to return to work. By developing new ways to attach the device, different areas of the body can be evaluated for movement, whether hip, shoulder, knee, or wrist.

When Killen and Music developed the electrogoniometer in their senior design class while in undergraduate school at Stevens, they also received mentoring and assistance for establishing a small business to market the device.

Versor, Inc. is located in Cranford, New Jersey, kkillen2012@gmail.com.

About the National Academy of Inventors

The National Academy of Inventors is a 501(c)(3) non-profit member organization comprised of U.S. and international universities, and governmental and non-profit research institutions, with over 3,000 individual inventor members and Fellows spanning more than 200 institutions, and growing rapidly. It was founded in 2010 to recognize and encourage inventors with patents issued from the U.S. Patent and Trademark Office, enhance the visibility of academic technology and innovation, encourage the disclosure of intellectual property, educate and mentor innovative students, and translate the inventions of its members to benefit society. The NAI edits the multidisciplinary journal, Technology and Innovation – Proceedings of the National Academy of Inventors, published by Cognizant Communication Corporation (NY). The editorial offices of Technology and Innovation are located at the University of South Florida Research Park, 3702 Spectrum Blvd., Suite 165, Tampa, Florida, 33612 USA. Tel: +1-813-974-1347. Email: TIJournal@research.usf.edu

News Release by Florida Science Communications

Judy Lowry | EurekAlert!
Further information:
http://www.usf.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>