Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative method to starve tumors

13.02.2009
A team from the MUHC reveals a new mechanism involved in tumor development that could lead to an innovative treatment

The development of cancerous tumours is highly dependent on the nutrients the tumours receive through the blood.

The team of Dr. Janusz Rak, of the Research Institute of the McGill University Health Centre (MUHC) at the Montreal Children's Hospital, including Dr. Khalid Al-Nedawi and Brian Meehan, has just discovered a new mechanism that tumours use to stimulate the growth of the blood vessels that feed them. The researchers have also proposed a new way to control this process, which may translate into future therapies. These findings were published this week in the Proceedings of the National Academy of Sciences (PNAS).

An innovative method…

According to the researchers, tumour cells can release "bubbles" called microvesicles, which allow the tumours to communicate with the endothelial cells of blood vessels and stimulate changes in their behaviour. The microvesicles are armed with specific cancer proteins as they leave the tumour. When they are taken up by endothelial cells, the specific cancer proteins that they carry can trigger mechanisms that promote the abnormal formation of new blood vessels. The vessels then grow towards the tumour and supply it with the nutrients it requires to grow.

"We had already demonstrated the existence of these vesicles as well as their importance in the communication process between cancer cells and their environment. But this new discovery is much more targeted and represents a new direction in terms of therapy," said a delighted Dr. Rak.

… to starve tumors

In fact, a family of molecules derived from annexin V seems to effectively fight this process and ultimately may help "starve" the tumour. "The molecule we used is effective both in vitro and in vivo. It prevents the formation of new blood vessels in mice with cancer and therefore strongly inhibits tumour growth," explained Dr. Rak.

Called Diannexin, this molecule acts to block the in vitro fusion of vesicles and endothelial cells. In mice with cancer, Diannexin works to slow blood vessel growth towards the tumour, resulting in anti-cancer effects. This finding is particularly important considering the treatment was applied in isolation without additional chemotherapy. If combined with other agents, this new way of treating cancer may be even more potent.

Diannexin is currently being developed as an antithrombotic medication. It would therefore be possible to use it safely for different types of pathologies.

Funding

This project was funded through a grant from the Canadian Cancer Society Research Institute and the Fonds de la recherche en santé du Québec.

Dr. Janusz Rak

Dr. Janusz Rak is a researcher in the Cancer Axis at the Research Institute of the McGill University Health Centre at the Montreal Children's Hospital. He is also a Jack Cole Professor in Pediatric Oncology at McGill University.

Partners

This project was carried out in partnership with Dr. R.S. Kerbel of the Sunnybrook Health Sciences Centre, University of Toronto, and Dr. A.C. Allison of Alavita Pharmaceuticals Inc.

Find this press release, with the original article and a short audio document by following this link : http://www.muhc.ca/media/news/

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec.

The Montreal Children's Hospital (MCH) is the pediatric teaching hospital of the McGill University Health Centre and is affiliated with McGill University. The MCH is a leader in providing a broad spectrum of highly specialized care to newborns, children, and adolescents from across Quebec. Our areas of medical expertise include programs in brain development/behaviour, cardiovascular sciences, critical care, medical genetics and oncology, tertiary medical and surgical services, and trauma care. Fully bilingual, the hospital also promotes multiculturalism and serves an increasingly diverse community in more than 50 languages. The Montreal Children's Hospital sets itself apart with its team approach to innovative patient care. Our health professionals and staff are dedicated to ensuring children and their families receive exceptional health care in a friendly and supportive environment.

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 843 1560
isabelle.kling@muhc.mcgill.ca

Isabelle Kling | EurekAlert!
Further information:
http://www.muhc.ca/research

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>