Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative method to starve tumors

13.02.2009
A team from the MUHC reveals a new mechanism involved in tumor development that could lead to an innovative treatment

The development of cancerous tumours is highly dependent on the nutrients the tumours receive through the blood.

The team of Dr. Janusz Rak, of the Research Institute of the McGill University Health Centre (MUHC) at the Montreal Children's Hospital, including Dr. Khalid Al-Nedawi and Brian Meehan, has just discovered a new mechanism that tumours use to stimulate the growth of the blood vessels that feed them. The researchers have also proposed a new way to control this process, which may translate into future therapies. These findings were published this week in the Proceedings of the National Academy of Sciences (PNAS).

An innovative method…

According to the researchers, tumour cells can release "bubbles" called microvesicles, which allow the tumours to communicate with the endothelial cells of blood vessels and stimulate changes in their behaviour. The microvesicles are armed with specific cancer proteins as they leave the tumour. When they are taken up by endothelial cells, the specific cancer proteins that they carry can trigger mechanisms that promote the abnormal formation of new blood vessels. The vessels then grow towards the tumour and supply it with the nutrients it requires to grow.

"We had already demonstrated the existence of these vesicles as well as their importance in the communication process between cancer cells and their environment. But this new discovery is much more targeted and represents a new direction in terms of therapy," said a delighted Dr. Rak.

… to starve tumors

In fact, a family of molecules derived from annexin V seems to effectively fight this process and ultimately may help "starve" the tumour. "The molecule we used is effective both in vitro and in vivo. It prevents the formation of new blood vessels in mice with cancer and therefore strongly inhibits tumour growth," explained Dr. Rak.

Called Diannexin, this molecule acts to block the in vitro fusion of vesicles and endothelial cells. In mice with cancer, Diannexin works to slow blood vessel growth towards the tumour, resulting in anti-cancer effects. This finding is particularly important considering the treatment was applied in isolation without additional chemotherapy. If combined with other agents, this new way of treating cancer may be even more potent.

Diannexin is currently being developed as an antithrombotic medication. It would therefore be possible to use it safely for different types of pathologies.

Funding

This project was funded through a grant from the Canadian Cancer Society Research Institute and the Fonds de la recherche en santé du Québec.

Dr. Janusz Rak

Dr. Janusz Rak is a researcher in the Cancer Axis at the Research Institute of the McGill University Health Centre at the Montreal Children's Hospital. He is also a Jack Cole Professor in Pediatric Oncology at McGill University.

Partners

This project was carried out in partnership with Dr. R.S. Kerbel of the Sunnybrook Health Sciences Centre, University of Toronto, and Dr. A.C. Allison of Alavita Pharmaceuticals Inc.

Find this press release, with the original article and a short audio document by following this link : http://www.muhc.ca/media/news/

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec.

The Montreal Children's Hospital (MCH) is the pediatric teaching hospital of the McGill University Health Centre and is affiliated with McGill University. The MCH is a leader in providing a broad spectrum of highly specialized care to newborns, children, and adolescents from across Quebec. Our areas of medical expertise include programs in brain development/behaviour, cardiovascular sciences, critical care, medical genetics and oncology, tertiary medical and surgical services, and trauma care. Fully bilingual, the hospital also promotes multiculturalism and serves an increasingly diverse community in more than 50 languages. The Montreal Children's Hospital sets itself apart with its team approach to innovative patient care. Our health professionals and staff are dedicated to ensuring children and their families receive exceptional health care in a friendly and supportive environment.

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 843 1560
isabelle.kling@muhc.mcgill.ca

Isabelle Kling | EurekAlert!
Further information:
http://www.muhc.ca/research

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>