Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injectable gel could repair tissue damaged by heart attack

23.02.2012
University of California, San Diego researchers have developed a new injectable hydrogel that could be an effective and safe treatment for tissue damage caused by heart attacks.

The study by Karen Christman and colleagues appears in the Feb. 21 issue of the Journal of the American College of Cardiology. Christman is a professor in the Department of Bioengineering at the UC San Diego Jacobs School of Engineering and has co-founded a company, Ventrix, Inc., to bring the gel to clinical trials within the next year.

Therapies like the hydrogel would be a welcome development, Christman explained, since there are an estimated 785,000 new heart attack cases in the United States each year, with no established treatment for repairing the resulting damage to cardiac tissue.

The hydrogel is made from cardiac connective tissue that is stripped of heart muscle cells through a cleansing process, freeze-dried and milled into powder form, and then liquefied into a fluid that can be easily injected into the heart. Once it hits body temperature, the liquid turns into a semi-solid, porous gel that encourages cells to repopulate areas of damaged cardiac tissue and to preserve heart function, according to Christman. The hydrogel forms a scaffold to repair the tissue and possibly provides biochemical signals that prevent further deterioration in the surrounding tissues.

"It helps to promote a positive remodeling-type response, not a pro-inflammatory one in the damaged heart," Christman said.

What's more, the researchers' experiments show that the gel also can be injected through a catheter, a method that is minimally invasive and does not require surgery or general anesthesia. New, unpublished work by her research team suggests that the gel can improve heart function in pigs with cardiac damage, which brings this potential therapy one step closer to humans, said Christman.

There are few injectable cardiac therapies in development designed to be used in large animals such as pigs, which have a heart that is similar in size and anatomy to the human heart, Christman explained. "Most of the materials that people have looked at have been tested in rats or mice, and they are injectable via a needle and syringe. However, almost all of them are not compatible with catheter delivery and would gel too quickly, clogging the catheter during the procedure.

In experiments with rats, the gel was not rejected by the body and did not trigger arrhythmic heart beating, providing some assurance that the gel will be similarly safe for humans, the researchers note.

Christman has an equity interest in Ventrix, Inc., a company that may potentially benefit from the research results, and also serves on the company's Scientific Advisory Board. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies.

The study's co-authors include Jennifer Singelyn, Priya Sundaramurthy, Todd Johnson, Pamela Schup-Magoffin, Diane Hu, Denver Faulk, Jean Wang, and Kristine M. Mayle in the Department of Bioengineering; Kendra Bartels, Anthony N. DeMaria, and Nabil Dib of the UC San Diego School of Medicine; and Michael Salvatore and Adam M. Kinsey of Ventrix, Inc. The research was funded in part by the National Institutes of Health Director's New Innovator Award Program (part of the NIH Roadmap for Medical Research), the Wallace H. Coulter Foundation, and the National Science Foundation.

Catherine Hockmuth | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>