Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Influenza “Histone Mimic” Suppresses Antiviral Response

16.03.2012
A team of researchers led by scientists at The Rockefeller University has identified a novel mechanism by which influenza interferes with antiviral host response.

The finding, reported in this week’s issue of the journal Nature, shows that the immunosuppressive NS1 protein of the influenza A virus hijacks key regulators of antiviral gene function by mimicking a core component of gene regulating machinery. The results they describe have major implications for our understanding of the biology of seasonal influenza virus and its pathogenesis. This research also suggests a possible target for a new class of antiviral and anti-inflammatory drugs.

The researchers, led by Alexander Tarakhovsky, head of the Laboratory of Immune Cell Epigenetics and Signaling, showed that the NS1 protein of the H3N2 influenza -- the most common strain circulating each flu season -- contains the same sequence of amino acids as the “tail” domain of a DNA packaging protein in humans called histone H3. The histones are present in the cell nucleus and play an important role in gene activation. Chemical modifications of the histone ”tails” allow recruitment of effector proteins that, in turn, determine which genes are switched on or off. Chemical modifications of histones were first identified by Rockefeller scientist Vincent G. Allfrey in the early 1960s. Decades later, Rockefeller University’s C. David Allis proposed the ”histone code” theory that describes the importance of histone tails in regulating a wide array of cellular functions.

“By mimicking the histone H3 tail, the NS1 tail gives the virus access to the core of gene regulating machinery,” says first author Ivan Marazzi, a postdoctoral fellow in the Tarakhovsky lab. “Through this mimicry the virus targets a set of proteins in the nucleus of the infected cells and impairs the anti-viral host cell response.”

Marazzi, together with graduate student Jessica Ho, discovered the ability of NS1 protein to track and target a protein complex called PAF1C, which has been previously studied extensively by Robert G. Roeder’s lab at Rockefeller. Together with Roeder’s lab, the Tarakhovsky lab revealed the ability of NS1 to interfere with the activity of PAF1 complex. This complex turned out to be essential for the expression of the genes that are responsible for antiviral response.

“NS1 is hijacking PAF1C and using its similarity with the H3 ‘tail’ to gain access to a position in the genome that helps the virus to block antiviral genes,” says Ho. “This finding extends the known ability of pathogens to reveal key regulatory processes and to use them for the pathogen’s advantage.”

The current study bears several major implications for influenza research and treatment. The NS1 protein varies from strain to strain. The ”tail” of NS1 appears to be one of the most diverse parts of the NS1 protein. Some flu strains such as H1N1, which was responsible for the 2009 pandemic, do not contain an NS1 “tail” at all. Together with their collaborator, prominent flu researcher Adolfo Garcia-Sastre of Mount Sinai School of Medicine, the Tarakhovsky lab plans to test if diversification of the NS1 “tail” helps the influenza virus to maintain a long-term presence within the human or animal populations. It is also puzzling how the influenza virus, which has no history of integration into animal or human DNA, has “learned” about the functional benefits of the histone “tail.”

Finally, by identifying PAF1C as a NS1 target, the researchers may have found a promising new target for attenuation of inflammatory responses. In collaboration with GlaxoSmithKline, previous efforts of the Tarakhovsky lab in this direction yielded a synthetic “histone mimic” called I-BET. By binding to BET proteins that control inflammatory gene expression, I-BET suppresses inflammation. I-BET and the related compound JQ1, which has been identified by Jay Bradner at the Dana-Farber Cancer Institute at Harvard Medical School, are now considered a new generation of so called “epigenetic” drugs, i.e., drugs that control DNA function without interfering with it directly.

The current discovery is proof and validation of the functional importance of “histone mimicry,” a phenomenon that was first discovered by Srihari Sampath, a Rockefeller M.D.-P.hD. student in Tarakhovsky’s lab. “I was always fascinated by mimicry and even brought an aquarium to my office with the hope of studying mimicry in fish,” says Tarakhovsky. “The aquarium experiment did not work well, but I am glad that I was helped by the flu.”

Joseph Bonner | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>