Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation: Attack is not always the best defense

27.05.2014

Pharmacists at Jena University develop three new drug candidates against inflammation

It is something like the police force of our body: the immune system. It disables intruding pathogens, it dismantles injured tissue and boosts wound healing. In this form of 'self-defense' inflammatory reactions play a decisive role.


Pharmacists at Jena University search for new drugs against inflammation.

photo: Jan-Peter Kasper/FSU

But sometimes the body’s defense mechanism gets out of control and cells or tissues are affected: “Then excessive reactions can occur and illnesses along with them,” Prof. Dr. Oliver Werz of the Friedrich Schiller University Jena says. He gives asthma, rheumatism, arteriosclerosis and cancer as examples: “For many of these diseases there are only few effective therapies without severe side effects.”

But the team of researchers working together with the Jena pharmacist has now developed three active agents which may be able to improve the healing of inflammatory illnesses better in future. The scientists present the potential therapeutic agents in renowned scientific journals. The agents are able to suppress a key enzyme in the body’s own cascade of inflammation.

“The enzyme called 5-LOX plays a pivotal role in the synthesis of so-called leukotrienes, which are part of numerous immunological and inflammatory processes,” Prof. Werz explains. Hence, the effort to prevent the synthesis of leukotrienes has been the focus of international research for inflammatory therapy for a long time. “Thousands of publications on the subject have emerged in the last 30 years,” says Werz. But apart from one exception none of these efforts have made it to the stage of an approved medication. Either the efficacy of the substances was poor or they were accompanied by unwanted side effects.

As a reason behind this, the Jena pharmacist sees the insufficient understanding of cellular regulation of the leukotriene biosynthesis and the lack of knowledge of the molecular mechanisms of agent and target molecule. “Instead of testing a number of substances to see if one of them might show any activity, we took a close look at 5-LOX and tried to find where exactly this enzyme is vulnerable and what the agents, which can interact with our target molecule, should look like," Werz describes the basis-orientated approach.

In this way the scientists of the Jena University together with partners from Austria, Italy, Turkey and Greece, were able to identify three possible agents. So for instance, a so-called benzoquinone proved to be an effective inhibitor of the 5-LOX. This is a substance which is derived from the natural product embelin from the "False Black Pepper“-plant (Embelia ribes). The pharmacists were able to show that this substance fits exactly into the active center of the enzyme and thus blocks its function. “This specifically only happens with 5-LOX," Werz says and stresses that benzoquinone may practically show no side effects.

A related substance of the red-violet natural dye indirubin, called 6-BIO, proved to be similarly promising. For this substance, the Jena researchers were able to clarify the mechanism of action as well: the 6-BIO inhibits the enzyme 5-LOX by blocking receptor sites for other molecules which are necessary for it to work properly. “In addition, 6-BIO also intervenes with the synthesis of additional inflammatory factors – the cytokines implying additional synergistic effects." This is why 6-BIO could for instance be of interest for the therapy of Alzheimer’s disease, in which cytokines are also playing a role.

The third possible active agent from the Jena University’s laboratory does not inhibit the 5-LOX itself, but it deactivates a helper-protein, which the enzyme needs for its effectiveness within the cell. The researchers identified this active agent, a benzimidazole with the short term BRP-7, by a virtual screening in a library consisting of nearly three million substances. "From our point of view all three of the drug candidates are very well suited to a further development as medications,” Prof. Werz summarizes. However, for this, the support of the pharmceutical industry is needed.

Original Publications:
Schaible AM et al. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase. British Journal of Pharmacology 2014 (DOI:10.1111/bph.12592)
Pergola C et al. Indirubin core structure of glycogen synthase kinase-3 inhibitors as novel chemotype for intervention with 5-lipoxygenase. Journal of Medical Chemistry 2014 (DOI:10.1021/jm401740w)
Pergola C et al. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP). British Journal of Pharmacology 2014 (DOI:10.1111/bph.12625)

Contact:
Prof. Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Philosophenweg 14, 07743 Jena
Germany
Phone: ++49 3641 / 949801
Email: oliver.werz[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: DOI Pergola cytokines effective efficacy enzyme inflammatory natural reactions substances synthesis

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>