Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation: Attack is not always the best defense

27.05.2014

Pharmacists at Jena University develop three new drug candidates against inflammation

It is something like the police force of our body: the immune system. It disables intruding pathogens, it dismantles injured tissue and boosts wound healing. In this form of 'self-defense' inflammatory reactions play a decisive role.


Pharmacists at Jena University search for new drugs against inflammation.

photo: Jan-Peter Kasper/FSU

But sometimes the body’s defense mechanism gets out of control and cells or tissues are affected: “Then excessive reactions can occur and illnesses along with them,” Prof. Dr. Oliver Werz of the Friedrich Schiller University Jena says. He gives asthma, rheumatism, arteriosclerosis and cancer as examples: “For many of these diseases there are only few effective therapies without severe side effects.”

But the team of researchers working together with the Jena pharmacist has now developed three active agents which may be able to improve the healing of inflammatory illnesses better in future. The scientists present the potential therapeutic agents in renowned scientific journals. The agents are able to suppress a key enzyme in the body’s own cascade of inflammation.

“The enzyme called 5-LOX plays a pivotal role in the synthesis of so-called leukotrienes, which are part of numerous immunological and inflammatory processes,” Prof. Werz explains. Hence, the effort to prevent the synthesis of leukotrienes has been the focus of international research for inflammatory therapy for a long time. “Thousands of publications on the subject have emerged in the last 30 years,” says Werz. But apart from one exception none of these efforts have made it to the stage of an approved medication. Either the efficacy of the substances was poor or they were accompanied by unwanted side effects.

As a reason behind this, the Jena pharmacist sees the insufficient understanding of cellular regulation of the leukotriene biosynthesis and the lack of knowledge of the molecular mechanisms of agent and target molecule. “Instead of testing a number of substances to see if one of them might show any activity, we took a close look at 5-LOX and tried to find where exactly this enzyme is vulnerable and what the agents, which can interact with our target molecule, should look like," Werz describes the basis-orientated approach.

In this way the scientists of the Jena University together with partners from Austria, Italy, Turkey and Greece, were able to identify three possible agents. So for instance, a so-called benzoquinone proved to be an effective inhibitor of the 5-LOX. This is a substance which is derived from the natural product embelin from the "False Black Pepper“-plant (Embelia ribes). The pharmacists were able to show that this substance fits exactly into the active center of the enzyme and thus blocks its function. “This specifically only happens with 5-LOX," Werz says and stresses that benzoquinone may practically show no side effects.

A related substance of the red-violet natural dye indirubin, called 6-BIO, proved to be similarly promising. For this substance, the Jena researchers were able to clarify the mechanism of action as well: the 6-BIO inhibits the enzyme 5-LOX by blocking receptor sites for other molecules which are necessary for it to work properly. “In addition, 6-BIO also intervenes with the synthesis of additional inflammatory factors – the cytokines implying additional synergistic effects." This is why 6-BIO could for instance be of interest for the therapy of Alzheimer’s disease, in which cytokines are also playing a role.

The third possible active agent from the Jena University’s laboratory does not inhibit the 5-LOX itself, but it deactivates a helper-protein, which the enzyme needs for its effectiveness within the cell. The researchers identified this active agent, a benzimidazole with the short term BRP-7, by a virtual screening in a library consisting of nearly three million substances. "From our point of view all three of the drug candidates are very well suited to a further development as medications,” Prof. Werz summarizes. However, for this, the support of the pharmceutical industry is needed.

Original Publications:
Schaible AM et al. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase. British Journal of Pharmacology 2014 (DOI:10.1111/bph.12592)
Pergola C et al. Indirubin core structure of glycogen synthase kinase-3 inhibitors as novel chemotype for intervention with 5-lipoxygenase. Journal of Medical Chemistry 2014 (DOI:10.1021/jm401740w)
Pergola C et al. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP). British Journal of Pharmacology 2014 (DOI:10.1111/bph.12625)

Contact:
Prof. Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Philosophenweg 14, 07743 Jena
Germany
Phone: ++49 3641 / 949801
Email: oliver.werz[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: DOI Pergola cytokines effective efficacy enzyme inflammatory natural reactions substances synthesis

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>