Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection warning system in cells contains targets for antiviral and vaccine strategies

31.07.2012
Findings point to enhancing the role of RGI-I pattern recognition receptors in detecting viruses and alerting an immune response

Two new targets have been discovered for antiviral therapies and vaccines strategies that could enhance the body's defenses against such infectious diseases as West Nile and hepatitis C. The targets are within the infection warning system inside living cells.

No vaccines exist for the viruses that cause West Nile or hepatitis C. New therapies are urgently needed to prevent and treat serious infections by these and related viruses.

The University of Washington is engaged in a major, multipronged effort to design therapeutics that harness the warning signals the body produces when viruses attack. Such therapies would prod people's cells into launching a stronger counterattack to control infections by elusive viruses.

UW specialists in how the body fends off viral diseases are studying pattern recognition molecules, called RIG-I-like receptors, found inside living cells. When these receptors detect virus invasions, they call in the immune system to fight infection.

Scientists in the laboratory of Dr. Michael Gale, Jr., UW professor of immunology, observed an interaction between these molecular dispatchers and a protein called 14-3-3 epsilon This protein acts a docking station where other proteins can gather. There they can more efficiently send out signals in response to threats.

The researchers noticed that the interaction between the alert trigger (RIG-I) and the docking station (14-3-3 epsilon) steps up when cells were infected with virus. The agitation prompts RIG-I to work with other proteins, such as TRIM25. Those proteins are essential for RIG-I to warn the immune system to respond to a virus intruder.

"Our work also demonstrated that RIG-I binding to 14-3-3 epsilon is important for RIG-I to move from within the cell where it detects viral RNA to a location on the cell's membrane where the cell's antiviral defenses can be activated," said Dr. Helene Liu, a postdoctoral fellow who led the study. The move is somewhat like running from the inner corridors of a building to a window to call for help.

"By understanding the molecular partners and location changes that RIG-I requires to convey its signal that virus is present in a cell, we can start to design therapeutics that can trigger this process to kick-off an antiviral immune response and fight virus infection," Liu said.

The scientists reported these initial findings in the May 17 issue of Cell Host & Microbe. The Gale laboratory reports additional observations on the RIG-I-like receptors in the August issue of Immunity, published online July 26.

Postdoctoral fellows Dr. Mehul Suthar and Dr. Hilario Ramos found that, during West Nile virus infection, an RIG-I like receptor called LGP2 promotes the survival and activity of CD8+ T white blood cells, commonly called killer T cells. These disease-fighters eliminate virus-infected cells from the body.

"By increasing the ability and length of time CD8+T cells can work within the body when West Nile virus is present, the immune system is strengthened and has a better chance of eliminating the virus," Suthar commented. Ramos added, "Based on this work, we can consider new ways to boost vaccine effectiveness through design of adjuvants or immune-stimulants. These might be applied within a vaccine approach to regulate LGP2 to enhance immunity to infection."

Gale directed the research effort for both projects. He heads the Center for Study of Innate Immunity to Hepatitis C Virus and the Center for Immune Mechanisms of Flavivirus Control, as well as two National Institutes of Health-funded multi-million dollar programs to develop new antiviral therapies and vaccine adjuvants.

"These two new discoveries," Gale said, "greatly advance our knowledge of how the body senses and responds to virus infection and provide us with new avenues to explore when designing antiviral therapies and new vaccines.

"West Nile virus is an emerging virus that has spread across the United States, and hepatitis C virus infects over 170 million people globally. Both viruses are devastating to the health of the individuals they infect. That is why the development of new clinical resources such as vaccines and antivirals for each is so critical."

West Nile virus is spreading throughout North America through infected mosquitoes. It can cause paralysis and death in people. Hepatitis C virus is transmitted through contact with blood or blood products containing the virus. It causes swelling and inflammation of the liver.

Most hepatitis C infections are persistent because the virus evades the immune defenses that normally limit the course of disease. The virus generates a chronic liver inflammation which scars the organ's tissues. The scarring can lead to liver failure and increases the risk of liver cancer. While therapies are available to treat hepatitis C infections, these treatments have harsh side-effects and are not effective in all people. No antiviral therapies are available to treat people infected with West Nile virus.

The work that led to the recent discoveries in the Gale laboratory was funded by grants from the National Institute for Allergy and Infectious Diseases of the National Institutes of Health to study the body's immune responses to hepatitis C and West Nile virus infections.

Leila Gray | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>