Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection in malaria-transmitting mosquito discovered

06.06.2014

Finding could lead to new strategies for malaria control

Researchers have found the first evidence of an intercellular bacterial infection in natural populations of two species of Anopheles mosquitoes, the major vectors of malaria in Africa. The infection, called Wolbachia, has been shown in labs to reduce the incidence of pathogen infections in mosquitoes and has the potential to be used in controlling malaria-transmitting mosquito populations.

"Wolbachia is an interesting bacterium that seems perfectly suited for mosquito control. However, there were strong doubts that it could ever be used against field Anopheles populations," said Flaminia Catteruccia, associate professor of immunology and infectious diseases at Harvard School of Public Health (HSPH) and at the University of Perugia, Italy. "We were thrilled when we identified infections in natural mosquito populations, as we knew this finding could generate novel opportunities for stopping the spread of malaria."

The study appears online June 6, 2014 in Nature Communications. Anopheles mosquitoes are the deadliest animal on the planet. They are responsible for transmitting malaria, which causes more than 600,000 deaths each year and puts half of the world's population at risk for diseases. Wolbachia infections spread rapidly through wild insect populations by inducing a reproductive phenomenon called cytoplasm incompatibility (CI), and 66% of arthropod species are infected. However, it was commonly thought that Anopheles mosquitoes were not natural hosts for Wolbachia infections, and attempts to identify infections in these mosquitoes in the field had failed.

Co-author Francesco Baldini, from University of Perugia, Italy and HSPH, in collaboration with researchers from CNRS, France, collected Anopheles mosquitoes from villages in Burkina Faso, West Africa, and analyzed their reproductive tracts. Their objective was to identify all the bacteria in the reproductive systems of both male and female mosquitoes; they were not looking directly for Wolbachia. To their surprise, they found a novel strain of the infection, which they named wAnga.

The researchers say they can now investigate whether the wAnga strain shares properties with other Wolbachia strains, which could make control strategies possible by inducing CI and reducing Plasmodium (the parasite that causes malaria) numbers in Anopheles mosquitoes in the field. "If successful, exploiting Wolbachia infections in malaria mosquitoes could reduce the burden of the disease globally," said co-author Elena Levashina, from the Max Planck Institute for Infection Biology, Berlin.

###

Other main authors of the study included Nicola Segata from the University of Trento, Italy, and Julien Pompon from CNRS, France.

This work was funded by a European Research Council FP7 ERC Starting Grant project 'Anorep' (grant ID: 260897), a Biotechnology and Biological Sciences Research Council grant (grant BB/I002898/1) and a Wellcome Trust grant (grant ID: 093553) to F.C., by the European Union FP7 grant (PCIG13-618833) and startup funding at the Centre for Integrative Biology (University of Trento) to N.S., by the EC FP7 Networks of Excellence EVIMalaR (242095) to E.A.L. and F.C., and by an ANR-11-BSV7-009-01 GIME to E.A.L. F.C. was supported by an NIH grant (grant ID: NIH 1R01AI104956-01A1). J.P. was supported by fellowships from FRM and the Fondation Des Treilles.

"Evidence of natural Wolbachia infections in field populations of Anopheles gambiae," Francesco Baldini, Nicola Segata, Julien Pompon, Perrine Marcenac, W. Robert Shaw, Roch K. Dabiré, Abdoulaye Diabaté, Elena A. Levashina, Flaminia Catteruccia, Nature Communications, DOI: 10.1038/ncomms4985, online June 6, 2014.

Harvard School of Public Health brings together dedicated experts from many disciplines to educate new generations of global health leaders and produce powerful ideas that improve the lives and health of people everywhere. As a community of leading scientists, educators, and students, we work together to take innovative ideas from the laboratory to people's lives—not only making scientific breakthroughs, but also working to change individual behaviors, public policies, and health care practices. Each year, more than 400 faculty members at HSPH teach 1,000-plus full-time students from around the world and train thousands more through online and executive education courses. Founded in 1913 as the Harvard-MIT School of Health Officers, the School is recognized as America's oldest professional training program in public health.

HSPH on Twitter: http://twitter.com/HarvardHSPH

HSPH on Facebook: http://www.facebook.com/harvardpublichealth

HSPH on You Tube: http://www.youtube.com/user/HarvardPublicHealth

HSPH home page: http://www.hsph.harvard.edu

Todd Datz | Eurek Alert!

Further reports about: Anopheles HSPH Harvard Infection infections mosquito populations reproductive

More articles from Health and Medicine:

nachricht UV light robot to clean hospital rooms could help stop spread of 'superbugs'
15.04.2015 | Texas A&M University

nachricht Heart cells regenerated in mice
14.04.2015 | Weizmann Institute of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>