Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indoor Air Pollution Increases Asthma Symptoms

23.02.2009
A study by researchers at Johns Hopkins University found an association between increasing levels of indoor particulate matter pollution and the severity of asthma symptoms among children.

The study, which followed a group of asthmatic children in Baltimore, Md., is among the first to examine the effects of indoor particulate matter pollution. The results are published in the February 2009 edition of the journal Environmental Health Perspectives.

Particulate matter is an airborne mixture of solid particles and liquid droplets. The solid particles come in numerous shapes and sizes and may be composed of different chemical components. Fine particles measure 2.5 microns or less in size (approximately 1/30th the diameter of a human hair) and can penetrate deep into the body’s respiratory system. Coarse particles fall between 2.5 and 10 microns in diameter.

These larger particles can also enter the respiratory system and can be produced indoors through activities such as cooking and dusting. The U.S. Environmental Protection Agency (EPA) regulates outdoor levels of fine particle pollution, but does not have a standard for coarse particle pollution. There are no regulations for indoor pollution.

For the study, researchers from the Center for Childhood Asthma in the Urban Environment—a joint center of the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine—followed 150 asthmatic children, ages 2 to 6, for six months. Environmental monitoring equipment was used to measure the air in the child’s bedroom for over three three-day intervals. Air measurements were taken at the beginning of the study, after 3 months and again after 6 months. Ninety-one percent of the children who participated in the study were African-American, from lower socioeconomic backgrounds, and spent most of their time indoors.

“We found that substantial increases in asthma symptoms were associated both with higher indoor concentrations of fine particles and with higher indoor concentrations of coarse particles,” said Meredith C. McCormack, MD, MHS, lead author of the study and an instructor with the Johns Hopkins School of Medicine.

For every 10 micrograms per cubic meter of air (ug/m3) increase in indoor coarse particle concentration, there was a 6 percent increase in the number of days of cough, wheeze, or chest tightness, after adjusting for a number of factors. For every 10 ug/m3 increase in fine particles measured indoors, there was a 7 percent increase in days of wheezing severe enough to limit speech and after adjusting for various factors, a 4 percent increase in days on which rescue medication was needed. In many cases, the level of indoor fine particle pollution measured was twice as high as the accepted standard for outdoor pollution established by the EPA.

“Children spend nearly 80 percent of their time indoors, which makes understanding the effects of indoor air very important,” said co-author, Gregory B. Diette, MD, an associate professor in the School of Medicine and co-director of the Center for Childhood Asthma in the Urban Environment.

“Improving indoor air quality and lowering indoor particulate matter concentrations may provide additional means of improving asthma health, especially for children living in inner cities,” added co-author, Patrick Breysse, PhD, a professor in the Johns Hopkins Bloomberg School of Public Health and co-director of the Center for Childhood Asthma in the Urban Environment.

Additional authors of “In Home Particle Concentrations and Childhood Asthma Morbidity” are Elizabeth C. Matsui, Nadia N. Hansel, D’Ann Williams, Jean Curtin-Brosnan and Peyton Eggleston.

The research was supported by National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the U.S. Environmental Protection Agency; and the Johns Hopkins NIEHS Center for Urban Environmental Health.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>