Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indirubin -- Component Of Chinese herbal remedy might block brain tumor's spread

13.07.2011
The active ingredient in a traditional Chinese herbal remedy might help treat deadly brain tumors, according to a new study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The researchers discovered that the compound, indirubin, both blocks the migration of glioblastoma cells, preventing their spread to other areas of the brain, and the migration of endothelial cells, preventing them from forming the new blood vessels that the tumor needs to grow.

Glioblastomas occur in about 18,500 Americans annually and kill nearly 13,000 of them yearly. Glioblastoma multiforme is the most common and lethal form of the malignancy, with an average survival of 15 months after diagnosis.

The research is published online in the journal Cancer Research.

"We have pretty good methods to stop glioblastoma from growing in the human brain, but these therapies fail because tumor cells migrate from the original site and grow elsewhere in the brain," says co-principal investigator Dr. E. Antonio Chiocca, professor and chair of neurological surgery and co-director of the Dardinger Center for Neuro-oncology and Neurosciences.

"Our findings suggest that indirubins offer a novel therapeutic strategy for these tumors that simultaneously targets tumor invasion and angiogenesis," Chiocca says.

"This study shows for the first time that drugs of the indirubin family may improve survival in glioblastoma, and that these agents inhibit two of the most important hallmarks of this malignancy – tumor-cell invasion and angiogenesis," says co-principal investigator Dr. Sean Lawler, senior scientist and group leader of the Translational Neurooncology Group at the Leeds Institute of Molecular Medicine.

Indirubin is derived from the Indigo plant. It is the active ingredient in the Chinese herbal remedy called Dang Gui Long Hui Wan, which is used to treat chronic myeloid leukemia.

Chiocca, Lawler and their collaborators used multiple glioblastoma cell lines and two animal models to examine three derivatives of indirubin. Key findings include the following:

When human glioblastoma cells were transplanted into one brain hemisphere of mice, indirubin-treated animals survived significantly longer than controls and showed no migration of tumor cells to the opposite hemisphere.

In a separate experiment, indirubin reduced the migration of tumor cells by 40 percent in treated animals versus controls.

Treated tumors showed a lower density of blood vessels, and new blood-vessel growth was reduced up to three-fold in intracranial tumors, depending on the tumor-cell line.

A laboratory assay showed that indirubins reduced endothelial-cell migration by 52 to 41 percent compared with untreated controls.

"Overall, our findings suggest that indirubins reduce tumor invasion and tumor vasculature because of their antimigratory effects on both tumor and endothelial cells," Chiocca says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>