Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inactivated rabies viruses carrying canine distemper glycoproteins protect against both pathogens

02.02.2017

Currently licensed live attenuated canine distemper vaccines are highly effective. However, they retain the potential to cause disease in very susceptible species. Researchers at Paul-Ehrlich-Institut and Thomas Jefferson University have generated an inactivated candidate vaccine that induces protective immunity against both rabies and canine distemper and has an excellent safety profile. The candidate vaccine consists of a mix of two recombinant inactivated rabies viruses that carry either one of the two canine distemper glycoproteins in addition to its own glycoprotein.The results are published in the online edition of Journal of Virology 1 February 2016.

Rabies and canine distemper are among the most dangerous and lethal viral diseases afflicting carnivores. Rabies can also be transmitted to humans via bite from rabies-infected animals. It attacks the nervous system and can be deadly if not treated immediately.


Cells infected with canine distemper virus fuse to neighboring uninfected cells to form syncytia. Antibodies against canine distemper virus are used to stain the infected cells with a red dye

Source: PEI


Cells infected with rabies virus were stained with antibodies from rabies-immunized animals. These cells can be seen by stimulating a fluorescent dye attached to the antibodies, which glows green.

Source: PEI

Rabies vaccines contain inactivated virus particles and have an excellent stability and safety profile. For vaccination against canine distemper virus, which causes a measles-like disease in its hosts, live-attenuated viruses are used. These vaccine viruses replicate in the vaccinated animals to a certain extent and can lead to severe disease in highly susceptible species.

Prof. Dr. Veronika von Messling's group at the Veterinary Medicine Division, Paul-Ehrlich-Institut, in collaboration with Dr. Matthias Schnell's group at Thomas Jefferson University genetically engineered the rabies virus vaccine strain to carry one of the canine distemper virus glycoproteins in addition to its own glycoprotein. The protective immune response is directed against these proteins. Candidate vaccines were then produced following the purification and inactivation protocols used for rabies vaccines.

The researchers first demonstrated that a single shot was sufficient to elicit protective rabies antibody titers in ferrets. However, protection against canine distemper was only achieved when animals were immunized with a mix of viruses carrying both canine distemper virus glycoproteins. The researchers conclude that immune responses against both glycoproteins are necessary to protect from canine distemper.

"Our rabies-based vector is a promising platform for the development of new morbillivirus vaccines" explains von Messling. "It eliminates the risk for vaccine-induced disease and at the same time greatly increases the temperature stability compared to live-attenuated morbillivirus vaccines."

Original Publication

Da Fontoura Budaszewski R, Hudacek A, Sawatsky B, Krämer B, Xiangping Y, Schnell MJ, von Messling V (2017): Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity Against Both Pathogens.
J Virol Feb 01 [Epub ahead of print].
doi: 10.1128/JVI.02077-16


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://jvi.asm.org/content/early/2017/01/26/JVI.02077-16.abstract - Abstract of the publicaton
http://www.pei.de/EN/information/journalists-press/press-releases/2017/03-inacti... - this press release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>