Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In mice, vaccine stops urinary tract infections linked to catheters

18.09.2014

The most common type of hospital-associated infection may be preventable with a vaccine, new research in mice suggests.

The experimental vaccine, developed by researchers at Washington University School of Medicine in St. Louis, prevented urinary tract infections associated with catheters, the tubes used in hospitals and other care facilities to drain urine from a patient’s bladder. 


John Heuser

To adhere to catheters and start urinary tract infections, bacteria extend microscopic fibers with sticky proteins at their ends. Scientists have developed a vaccine that blocks the EbpA protein, visible as a white bulge above, and stops infections in mice.

Each day a catheter is present in the urethra and the bladder, the risk of urinary tract infection increases. Nearly every patient who has a catheter for more than 30 days acquires a urinary tract infection. The infections make urination painful and can damage the bladder. If untreated, bacteria can cross into the bloodstream and cause sepsis, a potentially life-threatening complication.

“Catheter-associated urinary tract infections are very common,” said first author Ana Lidia Flores-Mireles, PhD, a postdoctoral research associate at the School of Medicine. “Antibiotic resistance is increasing rapidly in the bacteria that cause these infections, so developing new treatments is a priority.”

The study is available online Sept. 17 in Science Translational Medicine.

Manufacturers typically coat catheters with antibiotics to reduce the risk of infection. But Flores-Mireles and her colleagues in the laboratory of Scott Hultgren, PhD, showed that inserting catheters into the bladder provokes an inflammatory response that results in the catheter being covered with fibrinogen, a blood-clotting protein.

Fibrinogen shields bacteria from the antibiotics and provides bacteria with a landing pad to adhere to and food to consume as they establish an infection, the research revealed.

“The bacteria use long, thin hairs known as pili to anchor themselves to the fibrinogen, and then they can start to form biofilms, which are slimy coatings on the surface of the catheter composed of many bacteria,” said co-author Michael Caparon Jr., PhD, professor of molecular microbiology. “The biofilms protect the bacteria from antibiotics and immune cells, further prevent them from being washed from the body by the flow of urine, and make it possible for bacteria to seed the lining of the bladder with infections.”

The urethra and bladder of a mouse are too small to insert a full catheter into, but the scientists showed that surgically implanting a small segment of catheter into the bladder via the urethra increased vulnerability to infection in a similar fashion.

Working with Enterococcus faecalis, a common cause of catheter-associated urinary tract infections, Flores-Mireles showed that a protein on the end of the pili, EbpA, binds to fibrinogen and makes it possible for the bacteria to begin forming biofilms.

When Flores-Mireles prevented the bacteria from making EbpA, they couldn’t start infections.

“This protein is like the anchor of a boat,” she said. “Without the anchor, the infection is at the mercy of the waves and gets washed away.”

Next, the researchers injected the mice with a vaccine containing EbpA. The vaccine caused the animal’s immune systems to produce antibodies that blocked EbpA and stopped the infectious process.

The scientists are testing to see if the vaccine helps mice clear established infections of E. faecalis. They also are working to develop a monoclonal antibody that blocks EbpA to prevent catheter-associated infections in the urinary tract and elsewhere in the body.

“We took a closer look at this protein and found that one-half of it is essential for binding to fibrinogen to induce infections,” Flores-Mireles said. “The segment of genetic code that makes this part of the protein is also found in the genes of many other bacteria that cause urinary tract infections, so a vaccine, antibody or drug that blocks this part of the protein may help prevent other infections linked to catheters in the urinary tract and in other parts of the body.”

The research was based at Washington University’s Center for Women’s Infectious Disease Research, which is directed by Hultgren, the Helen L. Stoever Professor of Molecular Microbiology.

This work was supported by a Berg-Morse Postdoctoral Fellowship and National Institute of Diabetes and Digestive and Kidney Diseases grants R01-DK051406 and P50-DK0645400 from the National Institutes of Health (NIH).

Flores-Mireles AL, Pinkner JS, Caparon MG, Hultgren SJ. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated baldder infection in mice. Science Translational Medicine, online Sept. 17.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | Eurek Alert!
Further information:
http://news.wustl.edu/news/Pages/27403.aspx

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>