Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In mice, vaccine stops urinary tract infections linked to catheters

18.09.2014

The most common type of hospital-associated infection may be preventable with a vaccine, new research in mice suggests.

The experimental vaccine, developed by researchers at Washington University School of Medicine in St. Louis, prevented urinary tract infections associated with catheters, the tubes used in hospitals and other care facilities to drain urine from a patient’s bladder. 


John Heuser

To adhere to catheters and start urinary tract infections, bacteria extend microscopic fibers with sticky proteins at their ends. Scientists have developed a vaccine that blocks the EbpA protein, visible as a white bulge above, and stops infections in mice.

Each day a catheter is present in the urethra and the bladder, the risk of urinary tract infection increases. Nearly every patient who has a catheter for more than 30 days acquires a urinary tract infection. The infections make urination painful and can damage the bladder. If untreated, bacteria can cross into the bloodstream and cause sepsis, a potentially life-threatening complication.

“Catheter-associated urinary tract infections are very common,” said first author Ana Lidia Flores-Mireles, PhD, a postdoctoral research associate at the School of Medicine. “Antibiotic resistance is increasing rapidly in the bacteria that cause these infections, so developing new treatments is a priority.”

The study is available online Sept. 17 in Science Translational Medicine.

Manufacturers typically coat catheters with antibiotics to reduce the risk of infection. But Flores-Mireles and her colleagues in the laboratory of Scott Hultgren, PhD, showed that inserting catheters into the bladder provokes an inflammatory response that results in the catheter being covered with fibrinogen, a blood-clotting protein.

Fibrinogen shields bacteria from the antibiotics and provides bacteria with a landing pad to adhere to and food to consume as they establish an infection, the research revealed.

“The bacteria use long, thin hairs known as pili to anchor themselves to the fibrinogen, and then they can start to form biofilms, which are slimy coatings on the surface of the catheter composed of many bacteria,” said co-author Michael Caparon Jr., PhD, professor of molecular microbiology. “The biofilms protect the bacteria from antibiotics and immune cells, further prevent them from being washed from the body by the flow of urine, and make it possible for bacteria to seed the lining of the bladder with infections.”

The urethra and bladder of a mouse are too small to insert a full catheter into, but the scientists showed that surgically implanting a small segment of catheter into the bladder via the urethra increased vulnerability to infection in a similar fashion.

Working with Enterococcus faecalis, a common cause of catheter-associated urinary tract infections, Flores-Mireles showed that a protein on the end of the pili, EbpA, binds to fibrinogen and makes it possible for the bacteria to begin forming biofilms.

When Flores-Mireles prevented the bacteria from making EbpA, they couldn’t start infections.

“This protein is like the anchor of a boat,” she said. “Without the anchor, the infection is at the mercy of the waves and gets washed away.”

Next, the researchers injected the mice with a vaccine containing EbpA. The vaccine caused the animal’s immune systems to produce antibodies that blocked EbpA and stopped the infectious process.

The scientists are testing to see if the vaccine helps mice clear established infections of E. faecalis. They also are working to develop a monoclonal antibody that blocks EbpA to prevent catheter-associated infections in the urinary tract and elsewhere in the body.

“We took a closer look at this protein and found that one-half of it is essential for binding to fibrinogen to induce infections,” Flores-Mireles said. “The segment of genetic code that makes this part of the protein is also found in the genes of many other bacteria that cause urinary tract infections, so a vaccine, antibody or drug that blocks this part of the protein may help prevent other infections linked to catheters in the urinary tract and in other parts of the body.”

The research was based at Washington University’s Center for Women’s Infectious Disease Research, which is directed by Hultgren, the Helen L. Stoever Professor of Molecular Microbiology.

This work was supported by a Berg-Morse Postdoctoral Fellowship and National Institute of Diabetes and Digestive and Kidney Diseases grants R01-DK051406 and P50-DK0645400 from the National Institutes of Health (NIH).

Flores-Mireles AL, Pinkner JS, Caparon MG, Hultgren SJ. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated baldder infection in mice. Science Translational Medicine, online Sept. 17.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | Eurek Alert!
Further information:
http://news.wustl.edu/news/Pages/27403.aspx

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>