Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved nanoparticles deliver drugs into brain

12.09.2012
The brain is a notoriously difficult organ to treat, but Johns Hopkins researchers report they are one step closer to having a drug-delivery system flexible enough to overcome some key challenges posed by brain cancer and perhaps other maladies affecting that organ.

In a report published online on August 29 in Science Translational Medicine, the Johns Hopkins team says its bioengineers have designed nanoparticles that can safely and predictably infiltrate deep into the brain when tested in rodent and human tissue.

"We are pleased to have found a way to prevent drug-embedded particles from sticking to their surroundings so that they can spread once they are in the brain," says Justin Hanes, Ph.D., Lewis J. Ort Professor of Ophthalmology, with secondary appointments in chemical and biomolecular engineering, biomedical engineering, oncology, neurological surgery and environmental health sciences, and director of the Johns Hopkins Center for Nanomedicine.

After surgery to remove a brain tumor, standard treatment protocols include the application of chemotherapy directly to the surgical site to kill any cells left behind that could not be surgically removed. To date, this method of preventing tumor recurrence is only moderately successful, in part, because it is hard to administer a dose of chemotherapy high enough to sufficiently penetrate the tissue to be effective and low enough to be safe for the patient and healthy tissue.

To overcome this dosage challenge, engineers designed nanoparticles – about one-thousandth the diameter of a human hair – that deliver the drug in small, steady quantities over a period of time. Conventional drug-delivery nanoparticles are made by entrapping drug molecules together with microscopic, string-like molecules in a tight ball, which slowly breaks down when it comes in contact with water. According to Charles Eberhart, M.D., a Johns Hopkins pathologist and contributor to this work, these nanoparticles historically have not worked very well because they stick to cells at the application site and tend to not migrate deeper into the tissue.

Elizabeth Nance, a graduate student in chemical and biomolecular engineering at Hopkins, and Hopkins neurosurgeon Graeme Woodworth, M.D., suspected that drug penetration might be improved if drug-delivery nanoparticles interacted minimally with their surroundings. Nance first coated nano-sized plastic beads of various sizes with a clinically tested molecule called PEG, or poly(ethylene glycol), that had been shown by others to protect nanoparticles from the body's defense mechanisms. The team reasoned that a dense layer of PEG might also make the beads more slippery.

The team then injected the coated beads into slices of rodent and human brain tissue. They first labeled the beads with glowing tags that enabled them to see the beads as they moved through the tissue. Compared to non-PEG-coated beads, or beads with a less dense PEG coating, they found that a dense coating of PEG allowed larger beads to penetrate the tissue, even those beads that were nearly twice the size previously thought to be the maximum possible for penetration within the brain. They then tested these beads in live rodent brains and found the same results.

The researchers then took biodegradable nanoparticles carrying the chemotherapy drug paclitaxel and coated them with PEG. As expected, in rat brain tissue, nanoparticles without the PEG coating moved very little, while PEG-covered nanoparticles distributed themselves quite well.

"It's really exciting that we now have particles that can carry five times more drug, release it for three times as long and penetrate farther into the brain than before," says Nance. "The next step is to see if we can slow tumor growth or recurrence in rodents." Woodworth added that the team "also wants to optimize the particles and pair them with drugs to treat other brain diseases, like multiple sclerosis, stroke, traumatic brain injury, Alzheimer's and Parkinson's." Another goal for the team is to be able to administer their nanoparticles intravenously, which is research they have already begun.

Authors on the paper include Elizabeth Nance, Graeme Woodworth, Kurt Sailor, Ting-Yu Shih, Qingguo Xu, Ganesh Swaminathan, Dennis Xiang, Charles Eberhart and Justin Hanes, all from The Johns Hopkins University.

This work was supported by grants from the National Cancer Institute (R01CA164789 and U54CA151838).

On the Web:

Link to article in Science Translational Medicine: http://stm.sciencemag.org/content/4/149/149ra119

Hanes lab publications: http://www.hopkinsmedicine.org/kimmel_cancer_center/experts/Laboratory_Scientists/detail/A602624173773B994F71AE88C5BCF392/Justin_Hanes

Hanes' professorship announced at Wilmer Eye Institute: http://www.hopkinsmedicine.org/wilmer/news/hanes_professorship.html

Chemical and Biomolecular Engineering Department: http://www.jhu.edu/chembe/

Cathy Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>