Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved method of electrical stimulation could help treat damaged nerves

22.11.2011
Method shown to be potentially safer, more efficient than existing FES devices

Functional electrical stimulation (FES) was developed to help return lost function to patients with upper and lower extremity injuries and spinal cord injuries, among other applications. However, the devices, which work by stimulating neuronal activity in nerve-damaged patients, have a potential shortcoming in that the electrical currents needed for the treatment to work can also send errant signals to surrounding nerves, resulting in painful side effects.

Earlier this fall, a plastic surgery research team at Beth Israel Deaconess Medical Center (BIDMC) and an engineering team from the Massachusetts Institute of Technology (MIT), described a new method of nerve stimulation that reduces the device's electrical threshold by 40 percent, compared with traditional FES therapy. Reported in the October 23 Advance On-line issue of the journal Nature Materials, the findings could help researchers develop a safer, more efficient FES therapy with fewer side effects.

"This new device works by manipulating the concentration of charged ions surrounding the nerve," explains co-senior author Samuel J. Lin, MD, a surgeon in BIDMC's Divisions of Plastic Surgery and Otolaryngology and Assistant Professor of Surgery at Harvard Medical School. "This could potentially mean reduced risk to surrounding nerves because less electrical current is required to stimulate the affected nerve." The researchers additionally discovered that they could use the device to block signals in nearby nerve fibers, which could help prevent unwanted muscle contractions.

The research team, led by Lin and MIT Associate Professor Jongyoon Han, PhD, determined that by altering calcium ion concentrations in the fluid surrounding the nerves they could adjust the electrical impulses.

"Nerve fibers fire their signals based on the message they receive from the interaction of ions, or charged particles," explains coauthor Ahmed M.S. Ibrahim, MD, a Research Fellow in BIDMC's Divisions of Plastic Surgery and Otolaryngology. "We wanted to achieve the lowest current possible that would still result in positive results." After testing the manipulation of sodium and potassium ions, the researchers determined that consistent results could be achieved by removing positively charged calcium ions from the fluid surrounding the nerves.

The newly designed method not only prevents electrical impulses from traveling along a nerve but also uses significantly less current required by existing FES therapy. "This could be of particular benefit for the treatment of patients with various forms of paralysis," explains Lin. "The nerves that control movements and the sensory nerves that carry pain signals are extremely close together, so existing FES therapy has had limitations."

The researchers conducted their study of this new electrochemical-stimulation method in the nerves of frogs and plan to later test it in mammalian nerves.

"This is an important step towards the design of a device to aid in helping patients suffering from nerve paralysis and chronic neurological conditions," say Lin. "By bringing together biomedical and engineering research teams we have been able to successfully develop this new technique. Going forward, these types of collaborations will be absolutely crucial to creating new clinical treatments and enhancing patient care."

In addition to Lin, Han and Ibrahim, study coauthors include Rohat Melik of MIT, Amr N. Rabie of BIDMC and Ain Shams University, Cairo, Egypt; David Moses of Rice University, Houston, TX; and Ara Tan of the University of Minnesota.

This study was supported, in part, by a Harvard Catalyst grant from the Harvard Clinical and Translational Science Center (National Institutes of Health) and the Massachusetts Institute of Technology.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and ranks third in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>