Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved method of electrical stimulation could help treat damaged nerves

22.11.2011
Method shown to be potentially safer, more efficient than existing FES devices

Functional electrical stimulation (FES) was developed to help return lost function to patients with upper and lower extremity injuries and spinal cord injuries, among other applications. However, the devices, which work by stimulating neuronal activity in nerve-damaged patients, have a potential shortcoming in that the electrical currents needed for the treatment to work can also send errant signals to surrounding nerves, resulting in painful side effects.

Earlier this fall, a plastic surgery research team at Beth Israel Deaconess Medical Center (BIDMC) and an engineering team from the Massachusetts Institute of Technology (MIT), described a new method of nerve stimulation that reduces the device's electrical threshold by 40 percent, compared with traditional FES therapy. Reported in the October 23 Advance On-line issue of the journal Nature Materials, the findings could help researchers develop a safer, more efficient FES therapy with fewer side effects.

"This new device works by manipulating the concentration of charged ions surrounding the nerve," explains co-senior author Samuel J. Lin, MD, a surgeon in BIDMC's Divisions of Plastic Surgery and Otolaryngology and Assistant Professor of Surgery at Harvard Medical School. "This could potentially mean reduced risk to surrounding nerves because less electrical current is required to stimulate the affected nerve." The researchers additionally discovered that they could use the device to block signals in nearby nerve fibers, which could help prevent unwanted muscle contractions.

The research team, led by Lin and MIT Associate Professor Jongyoon Han, PhD, determined that by altering calcium ion concentrations in the fluid surrounding the nerves they could adjust the electrical impulses.

"Nerve fibers fire their signals based on the message they receive from the interaction of ions, or charged particles," explains coauthor Ahmed M.S. Ibrahim, MD, a Research Fellow in BIDMC's Divisions of Plastic Surgery and Otolaryngology. "We wanted to achieve the lowest current possible that would still result in positive results." After testing the manipulation of sodium and potassium ions, the researchers determined that consistent results could be achieved by removing positively charged calcium ions from the fluid surrounding the nerves.

The newly designed method not only prevents electrical impulses from traveling along a nerve but also uses significantly less current required by existing FES therapy. "This could be of particular benefit for the treatment of patients with various forms of paralysis," explains Lin. "The nerves that control movements and the sensory nerves that carry pain signals are extremely close together, so existing FES therapy has had limitations."

The researchers conducted their study of this new electrochemical-stimulation method in the nerves of frogs and plan to later test it in mammalian nerves.

"This is an important step towards the design of a device to aid in helping patients suffering from nerve paralysis and chronic neurological conditions," say Lin. "By bringing together biomedical and engineering research teams we have been able to successfully develop this new technique. Going forward, these types of collaborations will be absolutely crucial to creating new clinical treatments and enhancing patient care."

In addition to Lin, Han and Ibrahim, study coauthors include Rohat Melik of MIT, Amr N. Rabie of BIDMC and Ain Shams University, Cairo, Egypt; David Moses of Rice University, Houston, TX; and Ara Tan of the University of Minnesota.

This study was supported, in part, by a Harvard Catalyst grant from the Harvard Clinical and Translational Science Center (National Institutes of Health) and the Massachusetts Institute of Technology.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and ranks third in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>