Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved effectiveness of chemotherapy for cancer

15.08.2013
Cancer cells often develop defence mechanisms which enable them to survive chemotherapy. A group of researchers from the Institutes of Pharmacology and Pathology in Bern present new solutions for preventing the development of such resistances.

Cells can break down damaged molecules as well as whole areas of the cells themselves by means of self-digestion and utilize the decomposition products resulting from this process for the production of energy and new molecules or cell parts.


So-called «mitotic catastrophe» of a tumour cell: The image shows that the tumour cell is no longer able to divide after chemotherapy. However, the chromosomes (red) are distributed unequally. If this damaged cell does not die, it can cause cancer again. The group of scientists gathered by Hans-Uwe Simon discovered how cell death can be triggered and this cancer risk prevented.

Hans-Uwe Simon, Institute of Pharmacology, University of Bern.

This process of self-digestion is called autophagy and can be considered a renovation of the cell. The generation of energy by means of autophagy plays a special role for the cells if they do not have enough nutrients, oxygen or growth factors.

However, autophagy can also be used by tumour cells in order to survive stress situations such as chemotherapy - they digest the destroyed cell parts and regenerate themselves. This makes them resistant to the therapy. Now, a group of scientists from the University of Bern under the direction of Hans-Uwe Simon from the Institute of Pharmacology has discovered that the autophagy of tumour cells can be influenced with pharmacological means. The findings reveal new therapy approaches for the treatment of cancer. The study is published today in «Nature Communications».

Preventing the «reanimation» of tumour cells

The researchers studied the importance of autophagy for tumour cells. Often, chemotherapy alone is not able to destroy all of the tumour cells. While some of the tumour cells survive the therapy by means of autophagy, others go through a so-called «mitotic catastrophe», a state in which they are no longer able to divide. If these damaged cells do not die, they can cause cancer again.

Now, however, the group of scientists gathered by Hans-Uwe Simon has found a way to prevent the survival of cancer cells after chemotherapy. They discovered a connection between autophagy and mitotic catastrophe: when the self-digestion of cancer cells was suppressed by means of pharmaceuticals, the mitotic catastrophe directly resulted in cell death. This way, the survival mechanisms of cancer cells were eliminated.

With this method, the effectiveness of the usual chemotherapy can be significantly improved: "We hope that, based on these findings, we will be able to develop new therapies which will prevent the chemoresistance of established tumours", said Hans-Uwe Simon, the head of the study.

Nathalie Matter | Universität Bern
Further information:
http://www.unibe.ch

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>