Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved effectiveness of chemotherapy for cancer

15.08.2013
Cancer cells often develop defence mechanisms which enable them to survive chemotherapy. A group of researchers from the Institutes of Pharmacology and Pathology in Bern present new solutions for preventing the development of such resistances.

Cells can break down damaged molecules as well as whole areas of the cells themselves by means of self-digestion and utilize the decomposition products resulting from this process for the production of energy and new molecules or cell parts.


So-called «mitotic catastrophe» of a tumour cell: The image shows that the tumour cell is no longer able to divide after chemotherapy. However, the chromosomes (red) are distributed unequally. If this damaged cell does not die, it can cause cancer again. The group of scientists gathered by Hans-Uwe Simon discovered how cell death can be triggered and this cancer risk prevented.

Hans-Uwe Simon, Institute of Pharmacology, University of Bern.

This process of self-digestion is called autophagy and can be considered a renovation of the cell. The generation of energy by means of autophagy plays a special role for the cells if they do not have enough nutrients, oxygen or growth factors.

However, autophagy can also be used by tumour cells in order to survive stress situations such as chemotherapy - they digest the destroyed cell parts and regenerate themselves. This makes them resistant to the therapy. Now, a group of scientists from the University of Bern under the direction of Hans-Uwe Simon from the Institute of Pharmacology has discovered that the autophagy of tumour cells can be influenced with pharmacological means. The findings reveal new therapy approaches for the treatment of cancer. The study is published today in «Nature Communications».

Preventing the «reanimation» of tumour cells

The researchers studied the importance of autophagy for tumour cells. Often, chemotherapy alone is not able to destroy all of the tumour cells. While some of the tumour cells survive the therapy by means of autophagy, others go through a so-called «mitotic catastrophe», a state in which they are no longer able to divide. If these damaged cells do not die, they can cause cancer again.

Now, however, the group of scientists gathered by Hans-Uwe Simon has found a way to prevent the survival of cancer cells after chemotherapy. They discovered a connection between autophagy and mitotic catastrophe: when the self-digestion of cancer cells was suppressed by means of pharmaceuticals, the mitotic catastrophe directly resulted in cell death. This way, the survival mechanisms of cancer cells were eliminated.

With this method, the effectiveness of the usual chemotherapy can be significantly improved: "We hope that, based on these findings, we will be able to develop new therapies which will prevent the chemoresistance of established tumours", said Hans-Uwe Simon, the head of the study.

Nathalie Matter | Universität Bern
Further information:
http://www.unibe.ch

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>