Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved DNA stool test could detect digestive cancers in multiple organs

04.06.2009
Mayo Clinic researchers have demonstrated that a noninvasive screening test can detect not only colorectal cancer but also the common cancers above the colon -- including pancreas, stomach, biliary and esophageal cancers. This is one of more than 100 Mayo Clinic studies being presented at Digestive Disease Week 2009 in Chicago, May 30 – June 4.

Gastrointestinal (GI) cancers account for approximately one in four cancer deaths. While high cure rates can be achieved with early-stage detection for each type, only colorectal cancer is currently screened at the population level.

Most people associate colorectal cancer screening with invasive colonoscopy, but previous Mayo Clinic research has shown that stool DNA testing can identify both early-stage colorectal cancer and precancerous polyps. Researchers are now studying the use of noninvasive stool DNA testing to detect lesions and cancer throughout the GI tract.

"Patients are often worried about invasive tests like colonoscopies, and yet these tests have been the key to early cancer detection and prevention," says David Ahlquist, M.D., Mayo Clinic gastroenterologist and lead researcher on the study. "Our research team continues to look for more patient-friendly tests with expanded value, and this new study reveals an opportunity for multi-organ digestive cancer screening with a single noninvasive test."

The researchers studied 70 patients with cancers throughout the digestive tract. Besides colon cancer, the study looked at throat, esophagus, stomach, pancreatic, bile duct, gallbladder and small bowel cancers to determine if gene mutations could be detected in stool samples. Using a stool test approach developed at Mayo Clinic, researchers targeted DNA from cells that are shed continuously from the surface of these cancers. Also studied were 70 healthy patients. Stool tests were performed on cancer patients and healthy controls by technicians unaware of sample source. The stool DNA test was positive in nearly 70 percent of digestive cancers but remained negative for all healthy controls, thus demonstrating the approach's feasibility.

Stool DNA testing detected cancers at each organ site, including 65 percent of esophageal cancers, 62 percent of pancreatic cancers, and 75 percent of bile duct and gallbladder cancers. In this series, 100 percent of both stomach and colorectal cancers were detected. Importantly, stool test results did not differ by cancer stage; early-stage cancers were just as likely to be detected as late-stage cancers.

"It's very exciting to see this level of sensitivity for digestive cancer detection in our first look at this test application," says Dr. Ahlquist, "Historically, we've approached cancer screening one organ at a time. Stool DNA testing could shift the strategy of cancer screening to multi-organ, whole-patient testing and could also open the door to early detection of cancers above the colon which are currently not screened. The potential impact of this evolution could be enormous."

In October 2008, this Mayo Clinic research team published results of a multicenter study using first-generation stool DNA testing. In the seven-year, multicenter study (Ann Intern Med 2008;149:441-50), researchers found that the first-generation stool DNA tests were better than fecal blood tests for detecting cancer and precancerous polyps of the colon. In January 2009 (Gastroenterology 2009;136:459-70), Mayo researchers published some technical improvements that nearly doubled the sensitivity of stool DNA testing for detecting premalignant polyps and increased cancer detection to about 90 percent, which is the approximate rate of detection observed for CT colonography.

Researchers hope that the next generation tests will have significant improvements in accuracy, processing speed, ease of patient use and affordability. "We anticipate that next generation tests will also be able to predict the tumor site, which will help physicians direct diagnostic studies and minimize unnecessary procedures," says Dr. Ahlquist.

Dr. Ahlquist and Mayo Clinic have a financial interest related to technology studied in this research.

Other researchers from Mayo Clinic include: Hongzhi Zou, M.D., Ph.D; Jonathan Harrington; William Taylor; Mary Devens; Xiaoming Cao, M.D.; Russell Heigh, M.D.; Yvonne Romero, M.D.; Suresh Chari, M.D.; Gloria Petersen, Ph.D.; Lewis Roberts, M.B.Ch.B., Ph.D.; Jan Kasperbauer, M.D.; Julie Simonson; David I. Smith, Ph.D.; and Thomas Smyrk, M.D.

Mayo Clinic's Division of Gastroenterology and Hepatology has been ranked #1 in the U.S. News & World Report Honor Roll of Top Hospitals since the rankings began 19 years ago.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Amy Tieder | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>