Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important breakthrough in the fight against muscular dystrophies

13.09.2012
Recent findings by an international collaboration including IRCM researchers hold new implications for the pathogenesis of myotonic dystrophy
An important breakthrough could help in the fight against myotonic dystrophy. The discovery, recently published in the prestigious scientific journal Cell, results from an international collaboration between researchers at the IRCM, the Massachusetts Institute of Technology (MIT), the University of Southern California and Illumina. Their findings could lead to a better understanding of the causes of this disease.

Myotonic dystrophy (DM), also known as Steinert's disease, is the most common form of muscular dystrophies seen in adults. This disorder is characterized by muscle weakness and myotonia (difficulty in relaxing muscles following contraction). It is a multi-system disease, typically involving a wide range of tissues and muscle.

“We studied a specific family of proteins called muscleblind-like proteins (Mbnl), which were first discovered in the fruit fly Drosophila melanogaster,” says Dr. Éric Lécuyer, Director of the RNA Biology research unit at the IRCM. “These RNA-binding proteins are known to play important functions in muscle and eye development, as well as in the pathogenesis of DM in humans.”

Because of the extreme heterogeneity of clinical symptoms, DM has been described as one of the most variable and complicated disorders known in medicine. The systems affected, the severity of symptoms, and the age of onset of those symptoms greatly vary between individuals, even within the same family.

“In patients with DM, levels of Mbnl proteins are depleted to different extents in various tissues,” explains Dr. Neal A.L. Cody, postdoctoral fellow in Dr. Lécuyer’s laboratory. “These alterations in levels and functions of Mbnl proteins are thought to play an important role in causing the disease.”

“The global transcriptome analyses conducted in this study yielded several insights into Mbnl function and established genomic resources for future functional, modeling, and clinical studies,” add Drs. Christopher B. Burge and Eric T. Wang from MIT, the researchers who headed the study. “This knowledge will be invaluable in reconstructing the order of events that occur during DM pathogenesis, and could lead to the development of diagnostic tools for monitoring disease progression and response to therapy.”

According to Muscular Dystrophy Canada, myotonic dystrophy is the most common form of muscle disease, affecting approximately one person in 8,000 worldwide. However, in Quebec’s region of Charlevoix / Saguenay-Lac-Saint-Jean, the prevalence is exceptionally high, with one person in 500 affected by the disease. There is no cure for myotonic dystrophy at the present time. Treatment is symptomatic, meaning that problems associated with myotonic dystrophy are treated individually.
About the research project
This research project was funded by grants from the National Institutes of Health (NIH) to Christopher B. Burge and by an NIH training grant and a Muscular Dystrophy Foundation fellowship to Eric T. Wang. Work conducted by Neal A.L. Cody in Dr. Lécuyer’s laboratory was funded by the Fonds de Recherche du Québec – Santé.

The article published in Cell, Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins, was prepared by Eric T. Wang, Thomas T. Wang, Daniel J. Treacy, David E. Housman and Christopher B. Burge from the David K. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology (MIT); Neal A.L. Cody and Éric Lécuyer from the IRCM; Sonali Jog, Michela Biancolella and Sita Reddy from the University of Southern California; and Shujun Luo and Gary P. Schroth from Illumina Inc.

For more information on this scientific breakthrough, please refer to the article summary published online by Cell: http://www.cell.com/abstract/S0092-8674(12)00885-9.

About Dr. Éric Lécuyer
Éric Lécuyer obtained his PhD in molecular biology from the Université de Montréal. He is an Assistant IRCM Research Professor and Director of the RNA Biology research unit. Dr. Lécuyer is assistant professor-researcher in the Department of Biochemistry at the Université de Montréal. He is also adjunct professor in the Department of Medicine (Division of Experimental Medicine) at McGill University. Dr. Lécuyer is a research scholar from the Fonds de recherche du Québec – Santé. For more information, visit www.ircm.qc.ca/lecuyer.

About the IRCM
Founded in 1967, the Institut de recherches cliniques de Montréal (IRCM) (www.ircm.qc.ca) is currently comprised of 37 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, eight core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

Download the news release as a PDF document
http://www.ircm.qc.ca/Medias/Communiques/Documents/20120912_IRCMRelease
_LecuyerCell.pdf
For more information and to schedule an interview with Dr. Lécuyer, please contact:
Julie Langelier
Communications Officer (IRCM)
julie.langelier@ircm.qc.ca
(514) 987-5555

Lucette Thériault
Communications Director (IRCM)
lucette.theriault@ircm.qc.ca
(514) 987-5535

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>