Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important breakthrough in the fight against muscular dystrophies

13.09.2012
Recent findings by an international collaboration including IRCM researchers hold new implications for the pathogenesis of myotonic dystrophy
An important breakthrough could help in the fight against myotonic dystrophy. The discovery, recently published in the prestigious scientific journal Cell, results from an international collaboration between researchers at the IRCM, the Massachusetts Institute of Technology (MIT), the University of Southern California and Illumina. Their findings could lead to a better understanding of the causes of this disease.

Myotonic dystrophy (DM), also known as Steinert's disease, is the most common form of muscular dystrophies seen in adults. This disorder is characterized by muscle weakness and myotonia (difficulty in relaxing muscles following contraction). It is a multi-system disease, typically involving a wide range of tissues and muscle.

“We studied a specific family of proteins called muscleblind-like proteins (Mbnl), which were first discovered in the fruit fly Drosophila melanogaster,” says Dr. Éric Lécuyer, Director of the RNA Biology research unit at the IRCM. “These RNA-binding proteins are known to play important functions in muscle and eye development, as well as in the pathogenesis of DM in humans.”

Because of the extreme heterogeneity of clinical symptoms, DM has been described as one of the most variable and complicated disorders known in medicine. The systems affected, the severity of symptoms, and the age of onset of those symptoms greatly vary between individuals, even within the same family.

“In patients with DM, levels of Mbnl proteins are depleted to different extents in various tissues,” explains Dr. Neal A.L. Cody, postdoctoral fellow in Dr. Lécuyer’s laboratory. “These alterations in levels and functions of Mbnl proteins are thought to play an important role in causing the disease.”

“The global transcriptome analyses conducted in this study yielded several insights into Mbnl function and established genomic resources for future functional, modeling, and clinical studies,” add Drs. Christopher B. Burge and Eric T. Wang from MIT, the researchers who headed the study. “This knowledge will be invaluable in reconstructing the order of events that occur during DM pathogenesis, and could lead to the development of diagnostic tools for monitoring disease progression and response to therapy.”

According to Muscular Dystrophy Canada, myotonic dystrophy is the most common form of muscle disease, affecting approximately one person in 8,000 worldwide. However, in Quebec’s region of Charlevoix / Saguenay-Lac-Saint-Jean, the prevalence is exceptionally high, with one person in 500 affected by the disease. There is no cure for myotonic dystrophy at the present time. Treatment is symptomatic, meaning that problems associated with myotonic dystrophy are treated individually.
About the research project
This research project was funded by grants from the National Institutes of Health (NIH) to Christopher B. Burge and by an NIH training grant and a Muscular Dystrophy Foundation fellowship to Eric T. Wang. Work conducted by Neal A.L. Cody in Dr. Lécuyer’s laboratory was funded by the Fonds de Recherche du Québec – Santé.

The article published in Cell, Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins, was prepared by Eric T. Wang, Thomas T. Wang, Daniel J. Treacy, David E. Housman and Christopher B. Burge from the David K. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology (MIT); Neal A.L. Cody and Éric Lécuyer from the IRCM; Sonali Jog, Michela Biancolella and Sita Reddy from the University of Southern California; and Shujun Luo and Gary P. Schroth from Illumina Inc.

For more information on this scientific breakthrough, please refer to the article summary published online by Cell: http://www.cell.com/abstract/S0092-8674(12)00885-9.

About Dr. Éric Lécuyer
Éric Lécuyer obtained his PhD in molecular biology from the Université de Montréal. He is an Assistant IRCM Research Professor and Director of the RNA Biology research unit. Dr. Lécuyer is assistant professor-researcher in the Department of Biochemistry at the Université de Montréal. He is also adjunct professor in the Department of Medicine (Division of Experimental Medicine) at McGill University. Dr. Lécuyer is a research scholar from the Fonds de recherche du Québec – Santé. For more information, visit www.ircm.qc.ca/lecuyer.

About the IRCM
Founded in 1967, the Institut de recherches cliniques de Montréal (IRCM) (www.ircm.qc.ca) is currently comprised of 37 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, eight core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

Download the news release as a PDF document
http://www.ircm.qc.ca/Medias/Communiques/Documents/20120912_IRCMRelease
_LecuyerCell.pdf
For more information and to schedule an interview with Dr. Lécuyer, please contact:
Julie Langelier
Communications Officer (IRCM)
julie.langelier@ircm.qc.ca
(514) 987-5555

Lucette Thériault
Communications Director (IRCM)
lucette.theriault@ircm.qc.ca
(514) 987-5535

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>