Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impaired visual signals might contribute to schizophrenia symptoms

29.07.2013
By observing the eye movements of schizophrenia patients while playing a simple video game, a University of British Columbia researcher has discovered a potential explanation for some of their symptoms, including difficulty with everyday tasks.

The research, published in a recent issue of the Journal of Neuroscience, shows that, compared to healthy controls, schizophrenia patients had a harder time tracking a moving dot on the computer monitor with their eyes and predicting its trajectory. But the impairment of their eye movements was not severe enough to explain the difference in their predictive performance, suggesting a breakdown in their ability to interpret what they saw.

Lead author Miriam Spering, an assistant professor of ophthalmology and visual sciences, says the patients were having trouble generating or using an "efference copy" – a signal sent from the eye movement system in the brain indicating how much, and in what direction, their eyes have moved. The efference copy helps validate visual information from the eyes.

"An impaired ability to generate or interpret efference copies means the brain cannot correct an incomplete perception," says Spering, who conducted the dot-tracking experiments as a postdoctoral fellow at New York University, and is now conducting similar studies at UBC. The brain might fill in the blanks by extrapolating from prior experience, contributing to psychotic symptoms, such as hallucinations.

My vision would be a mobile device that patients could use to practice that skill, so they could more easily do common tasks that involve motion perception, such as walking along a crowded sidewalk.

"But just as a person might, through practice, improve their ability to predict the trajectory of a moving dot, a person might be able to improve their ability to generate or use that efference copy," Spering says. "My vision would be a mobile device that patients could use to practice that skill, so they could more easily do common tasks that involve motion perception, such as walking along a crowded sidewalk."

Study method

For the UBC study, schizophrenia patients, along with a control group, were asked to predict the trajectory of a small dot that appeared briefly on a monitor as it moved toward a vertical line. As an infrared-equipped video camera tracked their eye movements, participants would call out whether it would hit or miss the line. The schizophrenia patients performed significantly worse than the control group in predicting hits and misses, and they were also not as good at tracking the dot with their eyes.

Schizophrenia is a brain disorder affecting about one per cent of the population that often causes people to hear voices that others don't hear or see things that others don't see. They can also be incoherent when talking, or may sit quietly for hours without moving or talking. People with schizophrenia often have poor motion perception and eye movements, leading them to bump into people while walking or making it a challenge to cross a street. They often cannot perform even simple tasks like preparing a shopping list or reading a transportation map.

Impact for Parkinson's patients? Spering is now conducting the same experiment on people with Parkinson's disease, a movement disorder caused by the lack of the brain chemical dopamine. In addition to muscle tremor and stiffness, Parkinson's patients have poor visual perception and impaired eye movements. Spering is trying to see if the two are connected; if so, eye-movement exercises might improve vision in Parkinson's patients.

Better baseball through science: Spering is working with UBC baseball head coach Terry McKaig, who sought out her expertise in visual neuroscience to improve his team's hitting. She will soon begin testing players' eye movements while they hit balls in a batting cage. "Coach McKaig is extremely interested in the science, and excited about the possibility to include vision training into the team's daily routine," Spering says. "We are using a highly scientific approach to first understand the mechanisms that could lead to improvements, and then using our knowledge to enhance performance in the field."

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>