Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of prion proteins on the nerves revealed for the first time

09.08.2016

When prion proteins mutate, they trigger mad cow and Creutzfeldt-Jakob disease. Although they are found in virtually every organism, the function of these proteins remained unclear. Researchers from the University of Zurich and the University Hospital Zurich now demonstrate that prion proteins, coupled with a particular receptor, are responsible for nerve health. The discovery could yield novel treatments for chronic nerve diseases.

Ever since the prion gene was discovered in 1985, its role and biological impact on the neurons has remained a mystery. “Finally, we can ascribe a clear-cut function to prion proteins and reveal that, combined with particular receptor, they are responsible for the long-term integrity of the nerves,” says Professor Adriano Aguzzi from the Neuropathological Institute at the University of Zurich and University Hospital Zurich. The present study therefore clears up a question that researchers have been puzzling over for 30 years, but ultimately went unanswered.


Without the prion proteins, the so-called Schwann cells around the sensitive nerve fibers no longer form an insulating layer to protect the nerves. (Image: NatureReview / Neuroscience)

Prions are dangerous pathogens that trigger fatal brain degeneration in humans and animals. In the 1990s, they were responsible for the BSE epidemic more commonly known as mad cow disease. In humans, they cause Creutzfeldt-Jakob disease and other neurological disorders that are fatal and untreatable. Meanwhile, we know that infectious prions consist of a defectively folded form of a normal prion protein called PrPC located in the neuron membrane. The infectious prions multiply by kidnapping PrPC and converting it into other infectious prions.

Absent prion proteins cause nerve diseases

For a long time, it remained unclear why we humans – like most other organisms – have a protein in our neurons that does not perform any obvious function, yet can be extremely dangerous. Aguzzi has spent decades researching this issue and examining the theory that animals without the PrPC gene are resistant to prion diseases. But what are the repercussions for the organism if the prion protein is deactivated?

A few years ago, Aguzzi and his team discovered that mice without the PrPC gene suffer from a chronic disease of the peripheral nervous system. The reason: The so-called Schwann cells around the sensitive nerve fibers no longer form an insulating layer to protect the nerves. Due to this insulating myelin deficit, the peripheral nerves become diseased, potentially resulting in motoric disorders in the motion tract and paralysis.

The researchers have now gone one step further in the lab: In a new study, Alexander Küffer and Asvin Lakkaraju clarify exactly why the peripheral nerves become damaged in the absence of the prion protein PrPC. They discovered how the PrPC produced by the neurons docks onto the Schwann cells: namely via a receptor called Gpr126. If the prion protein and the receptor work together, a particular messenger substance (cAMP) which regulates the chemical interaction in the cells and is essential for the integrity of the nerve’s protective sheath increases. Gpr126 belongs to the large family of “G-protein-coupled receptors”, which are involved in many physiological processes and diseases.

30-year-old research question finally answered

This discovery solves a key question that has long puzzled neuroscientists and points towards future applications in hospitals. “If you want to deactivate the prion protein PrPC fully for potential Creutzfeld-Jakob disease treatments, you need to know the potential side effects on the nerves in the future,” explains Aguzzi. Moreover, the present results on the effect of PrPC at molecular level could yield a new approach for peripheral neuropathy. Currently, there are only extremely limited therapeutic options for these chronic debilitating diseases of the nervous system.

Literature:
Alexander Küffer, Asvin K. K. Lakkaraju, Amit Mogha, Sarah C. Petersen, Kristina Airich, Cédric Doucerain, Rajlakshmi Marpakwar, Pamela Bakirci, Assunta Senatore, Arnaud Monnard, Carmen Schiavi, Mario Nuvolone, Bianka Grosshans, Simone Hornemann, Frederic Bassilana, Kelly R. Monk & Adriano Aguzzi. The prion protein is an agonistic ligand of the G-protein-coupled receptor Gpr1/Adgrg6. Nature, 8 August 2016. doi:10.1038/nature19312

Contakt:
Prof. Adriano Aguzzi
Institute of Neuropathology
University of Zurich and University Hospital Zurich
Phone: + 41 44 255 21 07
E-mail: adriano.aguzzi@usz.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases.html

Melanie Nyfeler | Universität Zürich

Further reports about: PrPC Schwann cells diseases nerves nervous system peripheral nerves prion protein receptor

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>