Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunity from H1N1 flu vaccine wears off rapidly

02.11.2015

Individuals who get the flu vaccine lose their immunity to the H1N1 influenza virus in about two years, according to an analysis led by the Hong Kong Polytechnic University.

It is generally believed that individuals who get the H1N1 flu vaccine lose their immunity to the H1N1 flu virus in about 10 years, but according to an analysis led by The Hong Kong Polytechnic University (PolyU), immunity lasts for two years.


Spatio-temporal patterns of H1N1 pdm and H3N2

H1N1, commonly known as “swine flu”, was a new flu strain that appeared in 2009 and quickly spread around the world, killing thousands of people. It is now a regular part of the annual flu season.

A research team in China, Australia and the United States used a mathematical model to map the spread of different flu strains between 2006 and 2015 and found H1N1 spread in a “skip and resurgence” pattern in Europe and Eastern Asia. H1N1 was expected to hit again in 2011/12, but no outbreak materialized in these regions. It skipped that year, but came back the next season.

Fundamental epidemiological theory explains this pattern: after the first waves of infection, the population built up immunity and the virus could not explode. But immunity wore off after a couple of years, so enough people were once again susceptible in 2013.

The “skip and resurgence” pattern was observed throughout Europe and Eastern Asia, including United Kingdom and China. However, North America was noticeably different —there was no skip year there.

“Since it was generally believed that all developed countries are highly connected by international flights, such a distinct pattern between Europe and Northern America is very surprising,” said Dr He. The researchers suspect different vaccination policies may play a role.

In Europe, less than 30% of the population gets vaccinated, compared to almost 40% in the United States and 30% in Canada. Despite its higher vaccination rates, North America had a much higher incidence rate and associated mortality of H1N1 in 2009 than Europe.

The take up rate of H1N1 in the United States is high. Does it mean that the incidence rate and associated mortality rate will necessarily be low? Different flu strains are actually in competition with one another. If one strain dominates, the others are unable to gain a large foothold in the population and do not spread. In North America, vaccination against another major seasonal influenza strain, H3N2, might have slowed the spread of H3N2, reducing competition with H1N1.

In contrast, Europe and Eastern Asia had an outbreak of H3N2 during the season that H1N1 skipped. But the years that H1N1 dominated, there were far fewer cases of H3N2.

Dr. He stressed, “Vaccination is still the most efficient way to protect humans against the flu. But if the viruses included in the seasonal flu vaccine do not match well against that year’s dominant flu strains, it will reduce effectiveness of vaccination, and infections will surge dramatically. More in-depth study on the impact of vaccination policy, more accurate prediction of future dominant strains and the design of better vaccinations is urgently needed.”

Besides the rapid loss of immunity, the transmission rate and the total number of infected population can be estimated with the mathematical model framework developed by Dr He. This study suggests that the dominance of H1N1 and H3N2 will alternate in the near future in many countries.

For their analysis, Dr He and his research team members, including Dr Yang Lin from the School of Nursing and Professor Michael Tse from the Department of Electronic and Information Engineering of PolyU, used confirmed influenza cases from 138 countries compiled in FluNet, a database set up by the World Health Organization to track the flu. Their mathematical model and research was endorsed by world renowned mathematicians and was published in Scientific Reports this year.

Press contacts:
Dr Daihai HE
Assistant Professor, Department of Applied Mathematics
The Hong Kong Polytechnic University
Telephone:(852) 2766-7864 / 5648-8408
E-mail:daihai.he@polyu.edu.hk

The Hong Kong Polytechnic University | Research SEA
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

Further reports about: H1N1 H3N2 flu flu vaccine mathematical model vaccination

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>