Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune therapy can protect against or treat later lymphoma

03.11.2009
Specially developed immune system cells that target the common Epstein-Barr virus can protect immune-suppressed bone marrow transplant recipients against lymph system disease and cancers that arise from the viral infection, said a group of researchers led by those from Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital.

"Therapy with EBV-specific CTLs (cytotoxic lymphocytes) was effective for these patients who were severely immune-compromised, as the cells successfully reached the tumor, multiplied and were able to kill tumor cells" said Dr. Helen Heslop, lead author of the study and professor of pediatrics and medicine and a member of the Center for Cell and Gene therapy at BCM, The Methodist Hospital and Texas Children's. The cell remained in the body for up to nine years, providing long-term protection.

Patients who undergo the transplants are often immune-suppressed. Because most people have been infected with Epstein-Barr virus, the lack of immune protection makes their lymph system vulnerable to adverse effects of the virus, especially lymphomas that can be traced directly back to the infection.

In this study, 114 patients who had received hematopoietic or blood-related stem cell transplants from an unrelated donor or a family member whose bone marrow was not a perfect match also received infusions of immune components called T-cells that were design to target Epstein-Barr virus-infected cells. The treatment was preventive in 101 patients, none of whom developed lymphomas associated with Epstein-Barr virus infection. Eleven of 13 patients who had this disease or symptoms of it had sustained remissions.

Because the cells were marked, researchers determined that the special cells remained in the body for as long as nine years. The cost of the therapy, which spares normal cells, was estimated at just over $6,000, which compares favorably to other treatments for the disorder.

Researchers infused the cells soon after the patients received the stem cell transplants, which could account for its success, said Heslop and her colleagues.

"With such a promising therapy, it's important that it is not only effective, but that it is a cost-effective option for high-risk patients," said Heslop.

Others who took part in this research include Martin A Pule, Alexandra Rousseau, Catherine M Bollard, Malcolm K Brenner and Cliona M Rooney, all of the Center for Cell and Gene Therapy at BCM, Methodist and Texas Children's; Hao Liu and Meng-Fen Wu of the Dan L. Duncan Cancer Center at BCM, Karen S. Slobod of Novartis Vaccine & Diagnostics in Cambridge, Mass.; ,Gregory A Hale, Colton A Smith, Richard J Rochester and Julia L Hurwitz of St. Jude Children's Research Hospital in Memphis, Tenn. and Persis J Amrolia of Great Ormond St. Children's Hospital in London, UK.

Funding for this work came from the National Institutes of Health, the Leukemia and Lymphoma Society, the National Cancer Institute, the Assisi Foundation and the American Lebanese Syrian Associated Charities.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://bloodjournal.hematologylibrary.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>