Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system changes linked to inflammatory bowel disease revealed

10.12.2010
Scientists at the Virginia Bioinformatics Institute at Virginia Tech have discovered some of the key molecular events in the immune system that contribute to inflammatory bowel disease.

The results, which help researchers move one step further in their efforts to develop new drugs to treat inflammatory and immune-mediated diseases, are reported in the November 2010 edition (http://www.ncbi.nlm.nih.gov/pubmed/21068720) of the journal Mucosal Immunology from the Nature Publishing Group.

Inflammatory bowel disease starts when the gut initiates an abnormal immune response to some of the one hundred trillion or so bacteria that come into contact with the colon of the human body. More than 1 million people are affected by inflammatory bowel disease in North America alone and direct healthcare expenses for inflammatory bowel disease in the United States are estimated at more than $15 billion annually.

Earlier mathematical and computational work (http://www.ncbi.nlm.nih.gov/pubmed/20362587) by the scientists pinpointed a special type of immune cell as a possible target for intervention strategies to fight inflammation-related disease in the gut. The immune cells identified in the earlier work, which are known as M1 or classically activated macrophages, cause inflammation and possess a specific molecule, peroxisome proliferator-activated receptor-gamma, that, when activated, favors a switch to a type of macrophage that reduces the impact of inflammation (alternatively activated macrophage or M2) . The activation of the receptor protein and the anti-inflammatory M2 macrophage switch plays a beneficial role in reducing the severity of the disease in the gut during experimentally induced inflammatory bowel disease.

"We have been able to validate experimentally some of the key events that take place in the regulation of the mucosal immune system when inflammatory bowel disease is triggered in mice," said Josep Bassaganya-Riera, associate professor of immunology at the Virginia Bioinformatics Institute, leader of the Nutritional Immunology and Molecular Medicine Group in the institute's CyberInfrastructure Division, and principal investigator. "When we produce mice that lack the peroxisome proliferator-activated receptor-gamma specifically found in macrophages, the severity of inflammatory bowel disease increases significantly. In parallel, we are able to observe the impact of the onset of disease on key inflammation-related genes and other molecules involved in inflammation and metabolism."

"In this study, we were able to use mouse Affymetrix GeneChips® to examine which genes were turned on and off under disease and non-disease conditions," said Clive Evans, director of the Core Laboratory Facility at the institute. "This gave us a comprehensive snap-shot of what is happening in the immune system of mice when inflammation-related disease takes hold in the gut."

"In addition to our observations of what is happening when inflammatory bowel disease is triggered in mice, we showed that peroxisome proliferator-activated receptor-gamma in macrophages is essential for recovery from disease when the drug pioglitazone is used to treat it," said Raquel Hontecillas, assistant professor of immunology at the Virginia Bioinformatics Institute, and lead investigator of the study. "Our group has dissected the role of peroxisome proliferator-activated receptor-gamma as an internal thermostat for inflammation in other cells involved in gut inflammation such as intestinal epithelial cells and T cells."

Some of the currently available therapies for the treatment of inflammatory bowel disease in humans are effective in treating the disease but are linked to sometimes-drastic side effects in patients. The researchers hope to use their knowledge of the immune system and specific targets for repurposed drugs and naturally occurring compounds to develop safer alternatives for the long-term management of the disease.

"Our combined computer modeling and experimental validation approach, which is part of the work of our Center for Modeling Immunity to Enteric Pathogens, is already generating important clinical leads that should help us in our quest to deliver better therapies for infectious enteric diseases," concluded Bassaganya-Riera.

The research was funded by award number 5R01AT004308 of the National Center for Complementary and Alternative Medicine at the National Institutes of Health, European Commission grant number 224836, the Virginia Bioinformatics Institute-Fralin Commonwealth Research Initiative grants program, National Institute of Allergy and Infectious Diseases Contracts No. HHSN272200900040C and HHSN272201000056C, and funds from the Nutritional Immunology and Molecular Medicine Laboratory.

About the Nutritional Immunology and Molecular Medicine Group

The Nutritional Immunology and Molecular Medicine Group conducts translational research aimed at developing novel therapeutic and prophylactic approaches for modulating immune and inflammatory responses. The group combines computational modeling, bioinformatics approaches, pre-clinical experimentation and human clinical studies to better understand the mechanisms of immune regulation at mucosal surfaces and ultimately accelerate the development of novel treatments for infectious and immune-mediated diseases. Learn more at: www.vbi.vt.edu/nimm

Learn more about Josep Bassaganya-Riera at https://www.vbi.vt.edu/vbi_faculty/vbi_persons/dev_vbi_faculty?personId=177

VBI awarded $10.6 million from NIH to model immune responses to gut pathogens
http://www.vtnews.vt.edu/articles/2010/10/101410-vbi-immunity.html
Math model of colon inflammation singles out dangerous immune cells
http://www.vtnews.vt.edu/articles/2010/08/081110-vbi-mathmodel.html

Barry Whyte | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>