Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune System Can Hurt As Well As Help Fight Cancer

01.10.2008
Discovery could lead to new cancer treatments with fewer side effects
Researchers at the University of Pennsylvania School of Medicine have found that some proteins of the immune system can promote tumor growth. Investigators found that instead of fighting tumors, the protein C5a, which is produced during an immune response to a developing tumor, helps tumors build molecular shields against T-cell attack. These findings appeared online this week in Nature Immunology.

C5a is part of the complement system, one of the body’s immune defenses against pathogens. When activated, the system’s proteins rid the body of microbes and foreign cells. Many cancer treatments are aimed at boosting the immune system to kill tumors.

“Until now, everyone thought that the complement system was there to eliminate tumor cells. We found that in some conditions, the complement system can promote tumor growth, depending on the specific tumor and the specific environment in which the tumors are developing,” says John Lambris, PhD, the Dr. Ralph and Sallie Weaver Professor of Research Medicine.

However, Penn researchers found that in a mouse model, activation of the complement system in tumor tissue leads to the generation of C5a, which recruits myeloid-derived suppressor cells (MDSC) to tumors. These MDSCs block the function of CD8+ T cells, which would normally dismantle a tumor.

Researchers also found that blocking the C5a receptor on cell surfaces impairs tumor growth at the same rate of Paclitaxel, a chemotherapy drug. This discovery could lead to new cancer treatments with far fewer side effects than chemotherapy, surmise the investigators.

“Researchers are trying to introduce immune therapies and anti-tumor vaccines, but most of these vaccines fail,” says Lambris. “We show in this study a possible mechanism how to overcome this problem.” Lambris and his team are conducting studies that apply the approaches outlined in this paper to five models of cancer.

In addition to Lambris, Penn co-authors are Maciej M. Markiewski, Robert A. DeAngelis, Salome K Ricklin-Lichtsteiner, Anna Koutoulaki, Fabian Benencia (now at Ohio University), and George Coukos, as well as Craig Gerard, Children’s Hospital, Boston. The National Institutes of Health provided funding for this research.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: C5a Cancer Health MDSC Medicine T-cell UPHS immune system myeloid-derived suppressor cells

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>