Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune System Can Hurt As Well As Help Fight Cancer

01.10.2008
Discovery could lead to new cancer treatments with fewer side effects
Researchers at the University of Pennsylvania School of Medicine have found that some proteins of the immune system can promote tumor growth. Investigators found that instead of fighting tumors, the protein C5a, which is produced during an immune response to a developing tumor, helps tumors build molecular shields against T-cell attack. These findings appeared online this week in Nature Immunology.

C5a is part of the complement system, one of the body’s immune defenses against pathogens. When activated, the system’s proteins rid the body of microbes and foreign cells. Many cancer treatments are aimed at boosting the immune system to kill tumors.

“Until now, everyone thought that the complement system was there to eliminate tumor cells. We found that in some conditions, the complement system can promote tumor growth, depending on the specific tumor and the specific environment in which the tumors are developing,” says John Lambris, PhD, the Dr. Ralph and Sallie Weaver Professor of Research Medicine.

However, Penn researchers found that in a mouse model, activation of the complement system in tumor tissue leads to the generation of C5a, which recruits myeloid-derived suppressor cells (MDSC) to tumors. These MDSCs block the function of CD8+ T cells, which would normally dismantle a tumor.

Researchers also found that blocking the C5a receptor on cell surfaces impairs tumor growth at the same rate of Paclitaxel, a chemotherapy drug. This discovery could lead to new cancer treatments with far fewer side effects than chemotherapy, surmise the investigators.

“Researchers are trying to introduce immune therapies and anti-tumor vaccines, but most of these vaccines fail,” says Lambris. “We show in this study a possible mechanism how to overcome this problem.” Lambris and his team are conducting studies that apply the approaches outlined in this paper to five models of cancer.

In addition to Lambris, Penn co-authors are Maciej M. Markiewski, Robert A. DeAngelis, Salome K Ricklin-Lichtsteiner, Anna Koutoulaki, Fabian Benencia (now at Ohio University), and George Coukos, as well as Craig Gerard, Children’s Hospital, Boston. The National Institutes of Health provided funding for this research.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: C5a Cancer Health MDSC Medicine T-cell UPHS immune system myeloid-derived suppressor cells

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>