Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune System Can Hurt As Well As Help Fight Cancer

01.10.2008
Discovery could lead to new cancer treatments with fewer side effects
Researchers at the University of Pennsylvania School of Medicine have found that some proteins of the immune system can promote tumor growth. Investigators found that instead of fighting tumors, the protein C5a, which is produced during an immune response to a developing tumor, helps tumors build molecular shields against T-cell attack. These findings appeared online this week in Nature Immunology.

C5a is part of the complement system, one of the body’s immune defenses against pathogens. When activated, the system’s proteins rid the body of microbes and foreign cells. Many cancer treatments are aimed at boosting the immune system to kill tumors.

“Until now, everyone thought that the complement system was there to eliminate tumor cells. We found that in some conditions, the complement system can promote tumor growth, depending on the specific tumor and the specific environment in which the tumors are developing,” says John Lambris, PhD, the Dr. Ralph and Sallie Weaver Professor of Research Medicine.

However, Penn researchers found that in a mouse model, activation of the complement system in tumor tissue leads to the generation of C5a, which recruits myeloid-derived suppressor cells (MDSC) to tumors. These MDSCs block the function of CD8+ T cells, which would normally dismantle a tumor.

Researchers also found that blocking the C5a receptor on cell surfaces impairs tumor growth at the same rate of Paclitaxel, a chemotherapy drug. This discovery could lead to new cancer treatments with far fewer side effects than chemotherapy, surmise the investigators.

“Researchers are trying to introduce immune therapies and anti-tumor vaccines, but most of these vaccines fail,” says Lambris. “We show in this study a possible mechanism how to overcome this problem.” Lambris and his team are conducting studies that apply the approaches outlined in this paper to five models of cancer.

In addition to Lambris, Penn co-authors are Maciej M. Markiewski, Robert A. DeAngelis, Salome K Ricklin-Lichtsteiner, Anna Koutoulaki, Fabian Benencia (now at Ohio University), and George Coukos, as well as Craig Gerard, Children’s Hospital, Boston. The National Institutes of Health provided funding for this research.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: C5a Cancer Health MDSC Medicine T-cell UPHS immune system myeloid-derived suppressor cells

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>