Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system's bare essentials used to speedily detect drug targets

01.11.2010
New approach could speed better tests for earliest appearance of cancer cells and help develop vaccines

Scientists at Johns Hopkins have taken a less-is-more approach to designing effective drug treatments that are precisely tailored to disease-causing pathogens, such as viruses and bacteria, and cancer cells, any of which can trigger the body's immune system defenses.

In a report to be published in the latest issue of Nature Medicine online Oct. 31, researchers describe a new "epitope-mapping" laboratory test that within three weeks can pinpoint the unique binding site – or epitope – from any antigen where immune system T cells can most securely attach and attack invading germs or errant cells.

Knowing exactly where the best antigen-T-cell fit occurs – at sites where short stretches of proteins, called peptides, bind and are displayed on the surface of antigen-processing immune system cells – is a prerequisite for designing effective and targeted drug therapies, researchers say.

Identifying the best binding site, they say, should speed up cancer vaccine development, lead to new diagnostic tests that detect the first appearance of cancer cells, well before tumors develop, and sort out disorders that are difficult to diagnose, such as Lyme disease.

"Our new, simplified system reproduces what happens in the cells of the immune system when antigens from a pathogen first enter the body and need to be broken down into peptides to become visible to T cells, one of the two immune defender cell types," says immunologist Scheherazade Sadegh-Nasseri, Ph.D., an associate professor of pathology, biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine. "Once T cells recognize an antigen, they latch on, become activated, and call for other immune system cells to enter the fight," adds Sadegh-Nasseri, the senior study investigator for the team of scientists who developed the new epitope-mapping process.

Sadegh-Nasseri says the team's new lab test takes a fraction of the time involved in current methods, which rely on sequencing, or identifying every single peptide in the antigen's make-up, one after another. Such sequencing can take months, or even years, to identify possible T cell binding sites.

"The added beauty of our system is that the entire process can be done in the lab, so we do not have to perform tests in people," says Sadegh-Nasseri, who has a patent pending for the new test.

The Johns Hopkins team, including co-lead investigators AeRyon Kim, Ph.D., and Isamu Hartman, Ph.D., also immunologists, based their test on nearly 20 years of the team's previous research into how immune system cells selectively process antigens and the maze of possible protein combinations inside. That cumulative research led them to narrow their search to five essential and well-described proteins involved in antigen processing by immune system cells.

In their latest series of experiments, the team tested a mix of the selected immune system proteins to see if it could accurately detect two already known epitopes, those of the Texas strain of the influenza virus and type II collagen, both widely used experimental antigens. Then, they used the mix to find unknown epitopes for portions of the influenza virus that causes avian flu and for the parasite involved in malaria.

Chief among the epitope-mapping test's chemical components was a protein molecule common to all the body's immune system cells, called HLA-DR. This molecule is one of the most common binding molecules used in the natural immune system's peptide selection process. HLA stands for human leukocyte antigen, and HLA-DR is produced in a gene-dense region of the body's immune system, the major histocompatibility complex.

Other key chemicals in the make-up were HLA-DM, another protein compound that disrupts the binding of HLA-DR molecules to an antigen if the fit is not perfect, and three of the most common enzymes, so-called cathepsins, involved in breaking up the antigen into its visible, identifiable protein parts.

In the first set of experiments, the team mixed chemical solutions of each antigen with the five key proteins and used mass spectrometry – an electron-beaming device that can measure the exact make-up of molecules – to determine the best-fitting peptide based on precisely which segment of the antigen appeared as mass peaks. Peaks would indicate that HLA-DR had successfully bound to the antigen at a likely epitope.

Next, researchers confirmed their mass spectrometry findings by injecting mice bred to produce human HLA-DR with each antigen to trigger a standard immune response and collecting samples of the resulting T cells. The T cells were then grown in the lab and exposed to various peptides, including the suspect epitopes, to identify and confirm that only one triggered the greatest chemical response from the cultured T cells. The scientists knew that if they could match a peak highlighted by mass spectrometry to the peptide that produced the greatest T cell reaction, they had found the most heavily favored epitope.

When both tests were performed on any of the four disease antigens, researchers were able to narrow the suspect binding sites to one "immunodominant" epitope each for Texas strain of the flu, type II collagen, avian flu and malaria.

Kim, a postdoctoral research fellow at Johns Hopkins, says designing both experiments and completing the verification study took some seven years, noting that adding HLA-DM, which she calls a protein editor, was the pivotal factor in making the initial epitope-selection process work.

Researchers say their next steps are to broaden and refine their chemical mixture for selecting and identifying possible epitopes for other kinds of HLA because the current set of experiments analyzes only one of the most common HLA-type molecules in whites.

Study support was provided with funding from the National Institute of Allergy and Infectious Diseases, a member of the National Institutes of Health. Additional funding came from the Johns Hopkins Malaria Research Institute.

Besides Sadegh-Nasseri, Kim and Hartman, other Hopkins researchers involved in this study were Robert Cotter, Ph.D.; Kimberly Walters, Ph.D.; Sarat Dalai, Ph.D.; Tatiana Boronina, Ph.D.; Wendell Griffith, Ph.D.; and Robert Cole, Ph.D. Hartman is now at University of Texas Southwestern Medical Center. Other investigators were based at the U.S. Walter Reed Army Institute of Research, including Robert Schwenk, Ph.D.; David Lanar, Ph.D.; and Urszula Krzych, Ph.D.

For additional information, go to:
http://pathology2.jhu.edu/ssnweb/index.html
http://www.nature.com/nm/index.html

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>