Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells play surprising role in cystic fibrosis lung damage

17.03.2009
Immune cells once thought to be innocent bystanders in cystic fibrosis may hold the key to stopping patients' fatal lung disease. New findings from the Stanford University School of Medicine and Lucile Packard Children's Hospital show that white blood cells called neutrophils respond strongly to conflicting signals from cystic fibrosis patients' lungs, setting up a molecular fracas that may explain the patients' severe lung damage.

"Cystic fibrosis patients have a problem with turning down the inflammatory response in the lungs," said senior study author Rabindra Tirouvanziam, PhD, an instructor in pediatric pulmonary medicine. "We've found that patients' neutrophils become kind of schizophrenic, doing a number of things that are opposite to the textbook view of neutrophils' role."

The research, which will be published online March 23 in the Proceedings of the National Academy of Sciences, opens up new targets for cystic fibrosis treatment, Tirouvanziam said.

Cystic fibrosis is a genetic disease of the lungs and digestive system that affects about 30,000 people in the United States. Patients used to die in childhood, but the life expectancy for a child born today with cystic fibrosis is now 50 to 60 years. Although modern medications and dietary treatments do a good job of controlling the digestive aspects of the disease, patients still suffer serious lung problems. Thick, sticky mucus builds up in their lungs, and chronic inflammation and bacterial infections lead to the breakdown of lung tissue.

For years, scientists believed that cystic fibrosis patients' lung problems started when bacteria became trapped in the excess mucus in their lungs. Neutrophils showed up at the lungs in response to the invasive bacteria, the thinking went. Neutrophils are supposed to engulf and destroy bacteria, but something went wrong and the neutrophils quickly died in the lung, releasing tissue-destroying enzymes, scientists thought.

"This paradigm makes sense in a superficial way, but it has very little to do with clinical reality," Tirouvanziam said. Careful clinical testing in infants with cystic fibrosis has shown that lung inflammation with neutrophils occurs even in the absence of detectable infection. And Tirouvanziam's earlier research showed the immune cells stay alive in the lung for quite a while after they arrive.

So what are the live neutrophils doing in patients' lungs? The new findings surprised Tirouvanziam's team. After collecting fresh neutrophils from cystic fibrosis patients' sputum and analyzing them with fluorescence-activated cell sorting, the team discovered that signals from the patients' lung tissue were reprogramming live neutrophils with conflicting messages. The first set of signals switches on what Tirouvanziam calls "an ancient happiness pathway" — a chain of commands that tell the neutrophils that nutrients are plentiful, and that it's a good time to translate the cell's library of genes into new protein. The second pathway is a cellular alarm system associated with inflammation and stress.

"They're receiving a lot of signals at same time, and we think the happiness signals are messing them up completely," Tirouvanziam said.

His team now suspects the inappropriate activation of the "happiness signal" — the molecular target of rapamycin, or mTOR, cell signaling pathway — may trigger neutrophils to release large quantities of human neutrophil elastase, the enzyme that destroys the elastic fiber of lung tissue. In healthy individuals, neutrophils never release destructive human neutrophil elastase into nearby tissue.

Understanding the sequence of events that release the tissue-chewing enzyme in cystic fibrosis is important, Tirouvanziam said, because it could help researchers find new disease therapies. Drugs now given to improve patients' lung function target symptoms such as difficulty breathing, but don't do anything to alter neutrophils' behavior. Tirouvanziam hopes that will soon change.

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu
http://www.lpch.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>