Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the time of HIV infection

20.01.2011
Genetic variety of the virus causing AIDS as a time indicator

Researchers of the Swiss HIV Cohort Study have identified a simple method to establish when a patient contracted the virus causing . The time of infection can be of importance for the treatment of the illness and it contributes to the understanding of the course of the epidemic.

Medical doctors rarely know when a patient contracted HIV. The exact point in time can only be established in the first eight weeks after infection – during the so called acute phase. If the HIV test is taken later, it remains unclear if the infection took place three months or ten years ago. But this is about to change as researchers supported by the Swiss National Science Foundation (SNSF) have discovered a simple method to determine the approximate time of infection.

Relevant to understanding the spread of the illness
According to Huldrych Günthard from the university hospital in Zurich, information regarding the time of infection is beneficial in many ways. It allows doctors to establish how quick the illness is progressing and to determine the start of treatment accordingly. It will also inform epidemiological studies interested in how the disease is spreading.

In collaboration with colleagues from the ETH Zurich, researchers of the Swiss HIV Cohort Study analysed data that is obtained in routine resistance tests. These tests examine the genetics of the virus to establish its resistance to drugs. If a patient carries a variety of HIV strains, the test reveals ambiguous results with regard to certain points in the sequences of the virus’ genetic code.

By-product of resistance testing
"For a long time, the ambiguous results of the viral sequencing were considered a by-product of the test," says Günthard. "We wondered if they were an indicator of the variety of viruses in the blood." Viral variety is a result of reproduction and evolution in the body, it increases with time and the ambiguity could therefore be an indicator for the time that has passed since infection. Günthard and his team tested this assumption by comparing the drug resistance data with an existing rudimentary method to calculate the time of infection. Additionally there are patients who know the exact time of HIV infection: e.g. patients who took the test during the acute phase or patients who took tests before and after the infection.

The study, that has now been published in the journal "Clinical Infectious Diseases", was able to show that the proportion of ambiguous sequences is indeed increasing regularly during the first eight years after infection, afterwards the increase slows down. At the moment the new method is still too imprecise to establish the exact time of infection but the researchers were able to define a threshold level that indicates with 99 percent certainty if an infection happened more than a year ago.

(*) Roger D. Kouyos, Viktor von Wyl, Sabine Yerly, Jürg Böni, Philip Rieder, Beda Joos, Patrick Taffé , Cyril Shah, Philippe Bürgisser, Thomas Klimkait, Rainer Weber, Bernard Hirschel, Matthias Cavassini, Andri Rauch, Manuel Battegay, Pietro L. Vernazza, Enos Bernasconi, Bruno Ledergerber, Sebastian Bonhoeffer, Huldrych F. Günthard and the Swiss HIV Cohort Study (2011). Ambiguous Nucleotide Calls From Population-based Sequencing of HIV-1 are a Marker for Viral Diversity and the Age of Infection. Clinical Infectious Diseases online. doi: 10.1093/cid/ciq164 (als PDF beim SNF erhältlich; E-Mail: pri@snf.ch)

Swiss HIV Cohort Study
Established in 1988, the study aims to expand our understanding of the illness and to improve patient care. All Swiss hospitals specialising in HIV (Basel, Bern, Geneva, Lausanne, Lugano, St. Gallen and Zurich) have gathered and analysed data regarding the course of the illness from over 16,000 HIV positive persons. Currently more than 7500 people participate in the Swiss HIV Cohort Study, almost a third are women.

www.shcs.ch

Contact:
Prof. Dr. med. Huldrych Günthard
Klinik für Infektionskrankheiten und Spitalhygiene
Universitätsspital Zürich
Rämistrasse 100
8091 Zürich
Tel.: +41 (0)44 255 34 50
E-Mail: huldrych.guenthard@usz.ch

| idw
Further information:
http://www.snf.ch

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>