Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the time of HIV infection

20.01.2011
Genetic variety of the virus causing AIDS as a time indicator

Researchers of the Swiss HIV Cohort Study have identified a simple method to establish when a patient contracted the virus causing . The time of infection can be of importance for the treatment of the illness and it contributes to the understanding of the course of the epidemic.

Medical doctors rarely know when a patient contracted HIV. The exact point in time can only be established in the first eight weeks after infection – during the so called acute phase. If the HIV test is taken later, it remains unclear if the infection took place three months or ten years ago. But this is about to change as researchers supported by the Swiss National Science Foundation (SNSF) have discovered a simple method to determine the approximate time of infection.

Relevant to understanding the spread of the illness
According to Huldrych Günthard from the university hospital in Zurich, information regarding the time of infection is beneficial in many ways. It allows doctors to establish how quick the illness is progressing and to determine the start of treatment accordingly. It will also inform epidemiological studies interested in how the disease is spreading.

In collaboration with colleagues from the ETH Zurich, researchers of the Swiss HIV Cohort Study analysed data that is obtained in routine resistance tests. These tests examine the genetics of the virus to establish its resistance to drugs. If a patient carries a variety of HIV strains, the test reveals ambiguous results with regard to certain points in the sequences of the virus’ genetic code.

By-product of resistance testing
"For a long time, the ambiguous results of the viral sequencing were considered a by-product of the test," says Günthard. "We wondered if they were an indicator of the variety of viruses in the blood." Viral variety is a result of reproduction and evolution in the body, it increases with time and the ambiguity could therefore be an indicator for the time that has passed since infection. Günthard and his team tested this assumption by comparing the drug resistance data with an existing rudimentary method to calculate the time of infection. Additionally there are patients who know the exact time of HIV infection: e.g. patients who took the test during the acute phase or patients who took tests before and after the infection.

The study, that has now been published in the journal "Clinical Infectious Diseases", was able to show that the proportion of ambiguous sequences is indeed increasing regularly during the first eight years after infection, afterwards the increase slows down. At the moment the new method is still too imprecise to establish the exact time of infection but the researchers were able to define a threshold level that indicates with 99 percent certainty if an infection happened more than a year ago.

(*) Roger D. Kouyos, Viktor von Wyl, Sabine Yerly, Jürg Böni, Philip Rieder, Beda Joos, Patrick Taffé , Cyril Shah, Philippe Bürgisser, Thomas Klimkait, Rainer Weber, Bernard Hirschel, Matthias Cavassini, Andri Rauch, Manuel Battegay, Pietro L. Vernazza, Enos Bernasconi, Bruno Ledergerber, Sebastian Bonhoeffer, Huldrych F. Günthard and the Swiss HIV Cohort Study (2011). Ambiguous Nucleotide Calls From Population-based Sequencing of HIV-1 are a Marker for Viral Diversity and the Age of Infection. Clinical Infectious Diseases online. doi: 10.1093/cid/ciq164 (als PDF beim SNF erhältlich; E-Mail: pri@snf.ch)

Swiss HIV Cohort Study
Established in 1988, the study aims to expand our understanding of the illness and to improve patient care. All Swiss hospitals specialising in HIV (Basel, Bern, Geneva, Lausanne, Lugano, St. Gallen and Zurich) have gathered and analysed data regarding the course of the illness from over 16,000 HIV positive persons. Currently more than 7500 people participate in the Swiss HIV Cohort Study, almost a third are women.

www.shcs.ch

Contact:
Prof. Dr. med. Huldrych Günthard
Klinik für Infektionskrankheiten und Spitalhygiene
Universitätsspital Zürich
Rämistrasse 100
8091 Zürich
Tel.: +41 (0)44 255 34 50
E-Mail: huldrych.guenthard@usz.ch

| idw
Further information:
http://www.snf.ch

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>