Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hypnosis extends restorative slow-wave sleep

02.06.2014

Deep sleep promotes our well-being, improves our memory and strengthens the body’s defences. Zurich and Fribourg researchers demonstrate how restorative SWS can also be increased without medication – using hypnosis.

Sleeping well is a crucial factor contributing to our physical and mental restoration. SWS in particular has a positive impact for instance on memory and the functioning of the immune system. During periods of SWS, growth hormones are secreted, cell repair is promoted and the defence system is stimulated. If you feel sick or have had a hard working day, you often simply want to get some good, deep sleep. A wish that you can’t influence through your own will – so the widely held preconception.

Sleep researchers from the Universities of Zurich and Fribourg now prove the opposite. In a study that has now been published in the scientific journal “Sleep”, they have demonstrated that hypnosis has a positive impact on the quality of sleep, to a surprising extent. “It opens up new, promising opportunities for improving the quality of sleep without drugs”, says biopsychologist Björn Rasch who heads the study at the Psychological Institute of the University of Zurich in conjunction with the “Sleep and Learning” project (see box).

Brain waves ­– an indicator of sleep quality

... more about:
»activity »drugs »hypnosis »neutral »sleep

Hypnosis is a method that can influence processes which are very difficult to control voluntarily. Patients with sleep disturbances can indeed be successfully treated with hypnotherapy. However, up to now it hadn’t been proven that this can lead to an objectively measurable change in sleep. To objectively measure sleep, electrical brain activity is recorded using an electroencephalogram (EEG). The characteristic feature of slow-wave sleep, which is deemed to have high restorative capacity, is a very even and slow oscillation in electrical brain activity.

70 healthy young women took part in the UZH study. They came to the sleep laboratory for a 90-minute midday nap. Before falling asleep they listened to a special 13-minute slow-wave sleep hypnosis tape over loudspeakers, developed by hypnotherapist Professor Angelika Schlarb, a sleep specialist, or to a neutral spoken text. At the beginning of the experiment the subjects were divided into highly suggestible and low suggestible groups using a standard procedure (Harvard Group Scale of Hypnotic Susceptibility). Around half of the population is moderately suggestible. With this method women achieve on average higher values for hypnotic susceptibility than men. Nevertheless, the researchers expect the same positive effects on sleep for highly suggestible men.

Slow-wave sleep increased by 80 percent

In their study, sleep researchers Maren Cordi and Björn Rasch were able to prove that highly suggestible women experienced 80 percent more slow-wave sleep after listening to the hypnosis tape compared with sleep after listening to the neutral text. In parallel, time spent awake was reduced by around one-third. In contrast to highly suggestible women, low suggestible female participants did not benefit as much from hypnosis. With additional control experiments the psychologists confirmed that the beneficial impact of hypnosis on slow-wave sleep could be attributed to the hypnotic suggestion to “sleep deeper” and could not be reduced to mere expectancy effects.

According to psychologist Maren Cordi “the results may be of major importance for patients with sleep problems and for older adults. In contrast to many sleep-inducing drugs, hypnosis has no adverse side effects”. Basically, everyone who responds to hypnosis could benefit from improved sleep through hypnosis.

Further reading:
Maren Cordi, Angelika Schlarb, Björn Rasch. Deepening sleep by hypnotic suggestions. Sleep. 37(6). June 1, 2014. http://dx.doi.org/10.5665/sleep.3778

Sleep and Learning

The project “Sleep and Learning” is headed by Professor Björn Rasch from the University of Fribourg and conducted at the Universities of Zurich and Fribourg. The project is financed by the Swiss National Fund and the University of Zurich (main area of clinical research “Sleep and Health”). The goal of the project is to identify psychological and neurophysiological mechanisms underlying the positive role of sleep for our memory and mental health.

Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

Further reports about: activity drugs hypnosis neutral sleep

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>