Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human networking theory gives picture of infectious disease spread

14.12.2010
High school students' interactions provide new look at disease transmission

It's colds and flu season, and as any parent knows, colds and flu spread like wildfire, especially through schools.

New research using human-networking theory may give a clearer picture of just how, exactly, infectious diseases such as the common cold, influenza, whooping cough and SARS can spread through a closed group of people, and even through populations at large.

With the help of 788 volunteers at a high school, Marcel Salathé, a biologist at Penn State University, developed a new technique to count the number of possible disease-spreading events that occur in a typical day.

This results are published in this week's issue of the journal Proceedings of the National Academy of Sciences.

The research was funded by the National Science Foundation (NSF) and the National Institutes of Health (NIH).

"Contact networks, which are shaped by social and cultural processes, are keys to the spread of information and infection," says Deborah Winslow, NSF program director for cultural anthropology and the ecology of infectious diseases. "Before this research, the study of contact networks had been hampered by the lack of good data on their formation and structure."

"This setting proved a closed population in which the whole network could be determined. By collecting real-time network data, the researchers improved significantly on the usual error-prone techniques that depend on asking informants to recall their interactions."

Every day people come into contact with many other people; their interactions vary in length; and each contact is an opportunity for a disease to spread, Salathé said.

"But it's not like you can take a poll and ask people, 'How many different people have breathed on you today, and for how long?' We knew we had to figure out the number of person-to-person contacts systematically."

Using a population of high-school students, teachers and staff members as a model for a closed group of people, Salathé and his team designed a method to count how many times possible disease-spreading interactions occurred during a typical day.

Volunteers were asked to spend one school day wearing matchbox-sized sensor devices--called motes--on lanyards around their necks.

Like a cell phone, each mote was equipped with its own unique tracking number, and each mote was programmed to send and receive radio signals at 20-second intervals to record the presence of other nearby motes.

Volunteers then were asked to go about their day by attending classes, walking through the halls, and chatting with other people.

At the end of the day, Salathé's team collected the motes and recorded how many mote-to-mote interactions had occurred, and how long each interaction had lasted.

"An interaction isn't necessarily a conversation," Salathé said.

"Even when people aren't talking, they might be sneezing and coughing in each other's direction, bumping into each other, and passing around pathogens."

To record even these non-conversational events--any kind of spatial closeness that would be enough to spread a contagious disease--each mote used a 3-meter maximum signaling range, extending outward from the front of the person's body.

Defining a single interaction as any 20-second or longer event of mote-to-mote proximity, Salathé and his team found that the total number of close-proximity events was 762,868.

"The same two people may have had many very brief interactions," Salathé said. "Still, we have to count each brief interaction individually, even between the same two people."

"From a pathogen's point of view, each interaction is another chance to jump from person to person."

In addition, the team found peaks of interactions at times between classes, not surprisingly, when mote-wearing volunteers were physically closer to one another, moving around in the halls on their way to the next class.

Salathé and his team found that, at the end of the day, most people had experienced a fairly high number of person-to-person interactions, but they also found very little variation among individuals.

Strikingly, they did not find any individuals who had an extraordinarily high number of contacts when compared with the rest of the group. Such individuals--called super-spreaders--are known to be very important in the dynamics of disease spread.

"For example, in sexual-contact networks, one often finds a group of people with a much higher potential to contract and spread a virus such as HIV," Salathé said.

"This potential is due to these individuals' extremely high number of interactions. But in our experiment, while there may have been kids with a few more interaction events, for the most part, everyone had about the same high level of interaction."

Salathé explained that while schools may indeed be "hot beds" for colds and the flu, individual students do not seem to vary with regard to exposure risk due to their contact patterns.

Data from the motes also confirmed an important social-networking theory--that contact events are not random because many "closed triangles" exist within a community.

"If person A has contact with person B, and person B has contact with person C, chances are that persons A and C also have contact with each other," Salathé said.

"Real data illustrating these triangles provide just one more piece of information to help us track how a disease actually spreads."

Salathé also said that networking data such as his may help guide public-health initiatives such as vaccination strategies and prevention education.

Co-authors of the paper are: Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus Feldman and James Jones, all of Stanford University.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>