Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to turn white fat brown

07.12.2016

Penn scientists discover a molecular trigger of fat-cell 'browning' program, which could lead to better treatments for obesity and diabetes

A signaling pathway in fat cells may one day provide the key to better treatments for obesity, according to new research by scientists in the Perelman School of Medicine at the University of Pennsylvania. They reported their findings online ahead of print in Genes & Development.


This image shows adipose tissue, with fat droplets in green and blood vessels in red.

Credit: The laboratory of Zoltan Arany, MD, PhD, Perelman School of Medicine, University of Pennsylvania

Ordinary fat cells, also called white adipocytes, stuff themselves with fat molecules to store up energy, and their overloading leads to obesity and related conditions, including diabetes. Brown adipocytes, which are prevalent in children as "baby fat," but much less so in adults, do virtually the opposite: they burn energy rapidly to generate heat, and thereby protect the body from cold as well as obesity and diabetes.

The signaling pathway discovered by the Penn scientists activates a "browning program" in white adipocytes, making them more like energy-burning brown adipocytes.

"It's conceivable that one would be able to target this pathway with a drug, to push white fat to become brown fat and thereby treat obesity," said the study's senior author Zoltan P. Arany, MD, PhD, an associate professor of Cardiovascular Medicine. About 36 percent of American adults are considered obese and nearly 10 percent have type 2 diabetes.

Arany and colleagues found that the browning program in white adipocytes is normally suppressed by a protein called FLCN. It performs this function in cooperation with a major cellular signaling hub, a protein complex known as mTOR. The FLCN-mTOR interaction keeps the browning program switched off by preventing a protein called TFE3 from entering the cell nucleus.

The scientists showed that deleting the FLCN gene in the white adipocytes of mice allows TFE3 to migrate into the nucleus, where it binds to DNA and activates a key regulator of cellular metabolism called PGC-1β. It then turns on the set of genes for the browning program.

In the mice in which FLCN was deleted, white adipocytes became visibly browner as they produced more mitochondria--tiny, oxygen reactors that supply chemical energy within cells and convert energy to heat in brown adipocytes. In several other ways too, including their altered cellular structures, mitochondria's higher capacity for consuming oxygen, and their distinctive pattern of gene expression, the cells became more like brown adipocytes.

Arany and his team showed that they could reproduce this browning effect merely by forcing the overexpression of PGC-1β in the white adipocytes of mice. "In principle, a drug that boosts the activity of PGC-1β or some of its target genes might serve as a therapeutic activator of the browning program to curb obesity and treat or prevent diabetes," Arany said.

Aside from its potential medical relevance, the discovery is an important advance in understanding cell biology. "Cellular metabolism is regulated by major signaling pathways and with this study we're linking two of these major pathways, the mTOR and the PGC-1 pathways," Arany said. "The connection between them hasn't been well understood, but here we're clarifying it significantly."

Arany and his team plan further studies of the pathway and its relation to other mTOR signaling pathways.

###

Co-authors of the study include first author Shogo Wada, and Michael Neinast, Cholsoon Jang, Apoorva Babu, Jian Li, Atsushi Hoshino, Michael Morley, Joseph A. Baur, and Patrick Seale, all of Penn; Yasir H. Ibrahim, Gina Lee, and John Blenis of the Weill Cornell School of Medicine; José A. Martina and Rosa Puertollano of the National Heart, Lung and Blood Institute; Glenn C. Rowe of the University of Alabama; and James Rhee of Massachusetts General Hospital.

The study was supported by grants from the National Institutes of Health (T32GM007592, GM51405, HL121266, DK098656, AG043483, DK107667, HL094499).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania(founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.

Karen Kreeger | EurekAlert!

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>