Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How a small worm may help the fight against Alzheimer’s


N-acetylglucosamine prevents protein aggregation

Scientists at the Max Planck Institute for Biology of Ageing in Cologne have found that a naturally occurring molecule has the ability to enhance defense mechanisms against neurodegenerative diseases. Feeding this particular metabolite to the small round worm Caenorhabditis elegans, helps clear toxic protein aggregates in the body and extends life span.

Image of a C. elegans roundworm. The blue fluorescence highlights the tissue producing most N-acetylglucosamine.

© MPI for the Biology of Ageing

During ageing, proteins in the human body tend to aggregate. At a certain point, protein aggregation becomes toxic, overloads the cell, and thus prevents it from maintaining normal function. Damage can occur, particularly in neurons, and may result in neurodegenerative diseases like Alzheimer’s, Parkinson’s or Huntington’s disease.

By studying model organisms like Caenorhabditis elegans, scientists have begun to uncover the mechanisms underlying neurodegeneration, and thus define possible targets for both therapy and prevention of those diseases.

“Although we cannot measure dementia in worms“, explains Martin Denzel of the Max Planck Institute for Biology of Ageing, “we can observe proteins that we also know from human diseases like Alzheimer’s to be toxic by measuring effects on neuromuscular function. This gives us insight into how Alzheimer actually progresses on the molecular level“.

Now, the scientists Martin Denzel, Nadia Storm, and Max Planck Director Adam Antebi have discovered that a substance called N-acetylglucosamine apparently stimulates the body’s own defense mechanism against such toxicity.

This metabolite occurs naturally in the organism. If it is additionally fed to the worm, “we can achieve very dramatic benefits“, says Denzel. „It is a broad-spectrum effect that alleviates protein toxicity in Alzheimer’s, Parkinson’s and Huntington’s disease models in the worm, and it even extends their life span.“

This molecule apparently plays a crucial role in quality control mechanisms that keep the body healthy. It helps the organism to clear toxic levels of protein aggregation, both preventing aggregates from forming and clearing already existing ones.

As a result, onset of paralysis is delayed in models of neurodegeneration - How exactly the molecule achieves this effect is yet to be uncovered. “And we still don’t know whether it also works in higher animals and humans“, says Antebi. “But as we also have these metabolites in our cells, this gives good reason to suspect that similar mechanisms might work in humans.”


Dr. Adam Antebi

Sabine Dzuck

Max Planck Institute for Biology of Ageing, Köln

Phone: +49 221 37970-304
Fax: +49 221 3797088-304


Original publication

Martin S. Denzel*, Nadia J. Storm*, Aljona Gutschmidt, Ruth Baddi, Yvonne Hinze, Ernst Jarosch, Thomas Sommer, Thorsten Hoppe, and Adam Antebi
Hexosamine pathway metabolites enhance protein quality control and prolong life Cell
Cell, 13 March 2014

Dr. Adam Antebi | Max-Planck-Institute
Further information:

Further reports about: Alzheimer’s Biology Cell diseases enhance humans metabolite neurodegenerative proteins small toxic

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>