Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a small worm may help the fight against Alzheimer’s

14.03.2014

N-acetylglucosamine prevents protein aggregation

Scientists at the Max Planck Institute for Biology of Ageing in Cologne have found that a naturally occurring molecule has the ability to enhance defense mechanisms against neurodegenerative diseases. Feeding this particular metabolite to the small round worm Caenorhabditis elegans, helps clear toxic protein aggregates in the body and extends life span.


Image of a C. elegans roundworm. The blue fluorescence highlights the tissue producing most N-acetylglucosamine.

© MPI for the Biology of Ageing

During ageing, proteins in the human body tend to aggregate. At a certain point, protein aggregation becomes toxic, overloads the cell, and thus prevents it from maintaining normal function. Damage can occur, particularly in neurons, and may result in neurodegenerative diseases like Alzheimer’s, Parkinson’s or Huntington’s disease.

By studying model organisms like Caenorhabditis elegans, scientists have begun to uncover the mechanisms underlying neurodegeneration, and thus define possible targets for both therapy and prevention of those diseases.

“Although we cannot measure dementia in worms“, explains Martin Denzel of the Max Planck Institute for Biology of Ageing, “we can observe proteins that we also know from human diseases like Alzheimer’s to be toxic by measuring effects on neuromuscular function. This gives us insight into how Alzheimer actually progresses on the molecular level“.

Now, the scientists Martin Denzel, Nadia Storm, and Max Planck Director Adam Antebi have discovered that a substance called N-acetylglucosamine apparently stimulates the body’s own defense mechanism against such toxicity.

This metabolite occurs naturally in the organism. If it is additionally fed to the worm, “we can achieve very dramatic benefits“, says Denzel. „It is a broad-spectrum effect that alleviates protein toxicity in Alzheimer’s, Parkinson’s and Huntington’s disease models in the worm, and it even extends their life span.“

This molecule apparently plays a crucial role in quality control mechanisms that keep the body healthy. It helps the organism to clear toxic levels of protein aggregation, both preventing aggregates from forming and clearing already existing ones.

As a result, onset of paralysis is delayed in models of neurodegeneration - How exactly the molecule achieves this effect is yet to be uncovered. “And we still don’t know whether it also works in higher animals and humans“, says Antebi. “But as we also have these metabolites in our cells, this gives good reason to suspect that similar mechanisms might work in humans.”

Contact

Dr. Adam Antebi

Sabine Dzuck

Max Planck Institute for Biology of Ageing, Köln

Phone: +49 221 37970-304
Fax: +49 221 3797088-304

 

Original publication

 
Martin S. Denzel*, Nadia J. Storm*, Aljona Gutschmidt, Ruth Baddi, Yvonne Hinze, Ernst Jarosch, Thomas Sommer, Thorsten Hoppe, and Adam Antebi
Hexosamine pathway metabolites enhance protein quality control and prolong life Cell
Cell, 13 March 2014

Dr. Adam Antebi | Max-Planck-Institute
Further information:
http://www.mpg.de/8009079/roundworm-alzheimers

Further reports about: Alzheimer’s Biology Cell diseases enhance humans metabolite neurodegenerative proteins small toxic

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>