Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In-house pharmacists can help GPs reduce prescribing errors by up to 50 percent

21.02.2012
Medication errors are common in primary care but the number of mistakes could be reduced significantly if GPs introduced an in-house pharmacist-led intervention scheme.

These are the findings of a comprehensive study into sustainable ways of preventing patients from being harmed as a result of prescribing errors.

The research was led by Tony Avery, Professor of Primary Health Care in the School of Community Health Sciences at The University of Nottingham and funded by the Patient Safety Research Program of the UK Department of Health. The results are published on Tuesday 21 February 2012 in the Lancet - one of the world's leading medical journals.

The study involved at-risk patients in 72 general practices taking the drugs that are most commonly and consistently associated with medication errors.

The general practices were randomly allocated to receive either computerised feedback on patients at risk, or computerised feedback with support from a pharmacist to correct any errors detected. When followed up six months later the general practices receiving pharmacist support had significantly fewer prescribing errors.

Professor Avery, who is also a practicing GP in Nottingham, has called on the Department of Health and GP clinical commissioning groups to develop a wider roll-out of the intervention scheme. He said: "Our study has shown remarkable reductions in prescribing errors from an approach that could easily be rolled out to general practices in England and the rest of the UK. Most general practices already have in-house pharmacists, but much of their time is spent controlling prescribing costs. What is needed is a commitment for these pharmacists to spend more of their time on patient safety. Not only would this help prevent unnecessary harm to patients, but it may also reduce the costs associated with dealing with prescribing errors, which sometimes require hospital admission".

How the study was set up

Dr Avery and his team, which involved the University of Manchester, the University of Reading, the University of Otago in New Zealand, and the University of Edinburgh, studied GP practices in Nottinghamshire, Staffordshire and Central and Eastern Cheshire, England.

Practices allocated to the simple feedback system received computerised feedback on patients at risk from medication errors and the practices were given brief written information on the importance of each type of error.

GPs allocated to pharmacist-intervention met with a pharmacist at the beginning of intervention period to discuss the problems identified from the computerised feedback and to agree on an action plan. The pharmacist then spent roughly two days a week for the next 12 weeks dealing with the problems and working to improve safety systems. In some cases, patients were invited into the surgery for a prescription review with the pharmacist, or a GP, or to have a blood test, with the aim of correcting medication errors.

The results of the study

Their results showed that GPs were almost 50 per cent less likely to make errors in the monitoring of older people taking ACE inhibitors or diuretics, 42 per cent less likely to make errors in prescribing non-steroidal anti-inflammatory drugs to patients with a history of peptic ulcer (including stomach ulcer), and 27 per cent less likely to make errors in prescribing beta-blockers to patients with asthma.

Professor Avery said: "We know that GPs are aware of the risks of the drugs most commonly associated with adverse events, but errors do occur and our study has shown an effective way of dealing with them. We believe that there is an urgent need to roll out this pharmacist-led intervention to general practices throughout the country to avoid unnecessary errors in the future."

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>