Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Hospital on a Chip’ Could Revolutionize Treatment of Battlefield Wounds

27.11.2008
The battlefield of the future may react differently to combat injuries, providing instant treatment to wounded soldiers even before a medic reaches their side.

Impossible? Not if researchers at universities on opposite sides of the country succeed in creating a “field hospital on a chip” – a system worn by every soldier that would detect an injury and automatically administer the right medication. Survival of battlefield wounds often depends on the level of treatment within the first 30 minutes.

Evgeny Katz of Clarkson University in Potsdam, N.Y., and Joseph Wang of the University of California, San Diego, will share a four-year, $1.6 million grant from the Office of Naval Research to create the high-tech field hospital.

The automated sense-and-treat system will continuously monitor a soldier’s sweat, tears or blood for biomarkers that signal common battlefield injuries such as trauma, shock, brain injury or fatigue and then automatically administer the proper medication.

Katz will lead a team of researchers who are working on creating enzymes that can measure the biomarkers and provide the logic necessary to make a limited set of diagnoses based on several biological variables.

“We have already designed bioelectrodes and biofuel cells responding to multiple biochemical signals in a logic way,” says Katz, co-principal investigator on the project. “In the future we could expect implantable devices controlled by physiological signals and responding to the needs of an organism, notably a human.”

Katz, who joined the Clarkson faculty two years ago from the Hebrew University of Jerusalem, holds the Milton Kerker Endowed Chair of Colloid Science at Clarkson. His current research is a continuation of work begun before joining the Clarkson faculty.

Wang, principal investigator on the project, will head a nanoengineering team in San Diego that will build a minimally invasive system for the soldier’s body to process the biomarker information, develop a diagnosis and begin administering the proper medications.

“Since the majority of battlefield deaths occur within the first 30 minutes after injury, rapid diagnosis and treatment are crucial for enhancing the survival rate of injured soldiers,” says Wang.

Wang and Katz hope that the resulting enzyme-logic sense-and-treat system will revolutionize the monitoring and treatment of injured soldiers and will lead to dramatic improvements in their survival rate.

Michael P. Griffin | Newswise Science News
Further information:
http://www.clarkson.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>