Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Does hormone treatment predispose patients to breast cancer?

Breast cancer, the leading cause of death among women in France, is the most commonly occurring cancer in women. Sporadic breast cancer, which is non-hereditary, turns out to be the most widespread, representing 85 to 90% of all cases, but remains the least well-known.

Researchers at CNRS and CEA (1), working with a team from Hôpital Saint-Louis (2), have just discovered the cause of 50% of sporadic breast cancers. The results should also explain epidemiological studies which suggest that hormone treatment predisposes patients to breast cancer. The work is published in 'Cancer Research'.

More than four out of five breast cancers are not related to hereditary factors. These cancers, which are called sporadic, are due to causes which were until recently considered complex and poorly understood. On the other hand, hereditary forms of cancer, which represent only 10 to 15% of breast cancers, have for years been the subjects of studies, work which has resulted in the identification of ten genes whose mutation increases the risk of cancer in an individual.

Among these genes, nine are involved in the DNA damage response system, which is the collection of cell mechanisms that optimize the repair of DNA. The tenth gene codes for a protein which inhibits the action of the AKT1 enzyme. And among these ten genes, two are responsible for 50% of hereditary breast cancers: BRCA1 and BRCA2. Researchers from the "Radiobiologie moléculaire et cellulaire" (CNRS / CEA) lab took these data on hereditary cancers as the starting point for their research into non-hereditary forms.

A link between hereditary and sporadic cancers It turns out that the AKT1 protein is over-expressed in 50% of sporadic breast cancers. Could this protein play a key role in predisposition to non hereditary breast cancer? The researchers, seeking an answer to this question, were able to show that activation of AKT1 leads to the sequestration of the BRCA1 protein in the cytoplasm. This makes it impossible for the protein to penetrate the nucleus, which prevents it from fulfilling its role in DNA repair. The cell then behaves as if it had no BRCA1 gene, without involving a mutation (unlike hereditary forms, where the BRCA1 gene undergoes an alteration). This phenomenon is observed in 50% of sporadic tumors. These results show a single, previously undetected, link between sporadic and hereditary cancers: the DNA damage response system.

The researchers have also suggested that hormone treatment may confer upon patients a predisposition to breast cancer. As AKT1 is activated by hormones, hormone treatment (3) could indeed, in some cases, result in the chronic activation of the molecule. If this is the case, it could lead to a deregulation of the BRCA1 gene, and, as a result, to breast cancer. These first results still need to be confirmed, something that the team led by Bernard Lopez (4) will do soon through further laboratory and clinical studies.

(1) Institut de radiobiologie cellulaire et moléculaire, which is part of the Department of Life Sciences. (2) The team is led by Fabien Calvo, director of Inserm unit 716 "Cibles pharmacologiques dans les cancers" (3) Like for example estrogen treatment. (4) CNRS senior researcher and deputy director at the laboratory "Radiobiologie moléculaire et cellulaire"

Julien Guillaume | alfa
Further information:

Further reports about: AKT1 BRCA1 CEA CNRS Cancer DNA DNA damage Radiobiologie breast cancer genes hormone treatment

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>