Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hormone may help predict tubal ectopic pregnancy

New study shows the hormone adrenomedullin plays significant role in tubal ectopic pregnancies

Tubal ectopic pregnancy (TEP) is currently the leading cause of pregnancy-related deaths during the first trimester and a recent study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM) shows that the hormone adrenomedullin (ADM) may help predict this condition.

TEP is a condition where the fertilized egg implants in the fallopian tubes instead of in the uterus. In pregnant women, cilia (small protuberances) pulsate, or beat, to propel an embryo through the fallopian tubes towards the uterus. Defects in ciliary beats and muscle contractions may predispose a woman to TEP. With rare exceptions, ectopic pregnancies are not viable, and they are also dangerous for the mother and without proper treatment, can lead to death.

"This is the first report to address the effect of ADM on cilia beat frequency and muscular contraction in the oviduct," says the lead author of this study, Wai-Sum O, PhD, of the University of Hong Kong. "We found that low ADM expression may contribute to slower muscle contraction and ciliary beating, which hampers embryo transport and favors embryo retention in the oviduct. This finding is significant because plasma ADM levels may be useful in predicting TEP."

In this study, researchers examined women who were having their fallopian tubes removed or were having a hysterectomy for non-cancerous reasons. Each participant had tissue from their oviduct incubated in conditions to replicate the hormonal state of early pregnancy. In the oviducts of patients who had TEP, the ciliary beats were slower, the muscle contractions were less frequent, and there were lower levels of ADM than in the oviducts from a normal pregnancy. Administering ADM reversed the retardation of ciliary beating and muscle contraction and restored them to normal levels.

"We reported for the first time a significantly reduced expression of ADM in human oviduct tissue in TEP compared to control," said O. "ADM increases cilia motility, smooth muscle tone and contraction frequency, and the reduced ADM level in TEP may contribute to its pathogenesis by impairing embryo transport."

Other researchers working on the study include: Liao SB, Li HWR, Ho JC, Yeung WSB, Ng EHY, Cheung ANY, and Tang F, all of The University of Hong Kong.

The article, "Possible role of adrenomedullin in the pathogenesis of tubal ectopic pregnancy," appears in the June 2012 issue of JCEM.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 15,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland. To learn more about the Society and the field of endocrinology, visit our site at Follow us on Twitter at!/EndoMedia.

Aaron Lohr | EurekAlert!
Further information:

Further reports about: ADM Endocrine Hormon TEP ectopic pregnancy fallopian tube muscle contraction

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>