Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone may help predict tubal ectopic pregnancy

03.05.2012
New study shows the hormone adrenomedullin plays significant role in tubal ectopic pregnancies

Tubal ectopic pregnancy (TEP) is currently the leading cause of pregnancy-related deaths during the first trimester and a recent study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM) shows that the hormone adrenomedullin (ADM) may help predict this condition.

TEP is a condition where the fertilized egg implants in the fallopian tubes instead of in the uterus. In pregnant women, cilia (small protuberances) pulsate, or beat, to propel an embryo through the fallopian tubes towards the uterus. Defects in ciliary beats and muscle contractions may predispose a woman to TEP. With rare exceptions, ectopic pregnancies are not viable, and they are also dangerous for the mother and without proper treatment, can lead to death.

"This is the first report to address the effect of ADM on cilia beat frequency and muscular contraction in the oviduct," says the lead author of this study, Wai-Sum O, PhD, of the University of Hong Kong. "We found that low ADM expression may contribute to slower muscle contraction and ciliary beating, which hampers embryo transport and favors embryo retention in the oviduct. This finding is significant because plasma ADM levels may be useful in predicting TEP."

In this study, researchers examined women who were having their fallopian tubes removed or were having a hysterectomy for non-cancerous reasons. Each participant had tissue from their oviduct incubated in conditions to replicate the hormonal state of early pregnancy. In the oviducts of patients who had TEP, the ciliary beats were slower, the muscle contractions were less frequent, and there were lower levels of ADM than in the oviducts from a normal pregnancy. Administering ADM reversed the retardation of ciliary beating and muscle contraction and restored them to normal levels.

"We reported for the first time a significantly reduced expression of ADM in human oviduct tissue in TEP compared to control," said O. "ADM increases cilia motility, smooth muscle tone and contraction frequency, and the reduced ADM level in TEP may contribute to its pathogenesis by impairing embryo transport."

Other researchers working on the study include: Liao SB, Li HWR, Ho JC, Yeung WSB, Ng EHY, Cheung ANY, and Tang F, all of The University of Hong Kong.

The article, "Possible role of adrenomedullin in the pathogenesis of tubal ectopic pregnancy," appears in the June 2012 issue of JCEM.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 15,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland. To learn more about the Society and the field of endocrinology, visit our site at www.endo-society.org. Follow us on Twitter at https://twitter.com/#!/EndoMedia.

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

Further reports about: ADM Endocrine Hormon TEP ectopic pregnancy fallopian tube muscle contraction

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>