Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for a new treatment for bone cancer

12.10.2010
Children and young people who are diagnosed with bone cancer could benefit from better treatment in the future thanks to new research at The University of Nottingham.

The Bone Cancer Research Trust launches Bone Cancer Awareness Week today and has funded a new project at the University which is testing a theory that ‘friendly bacteria’ can be used to kill bone cancer cells.

Researchers at the School of Clinical Sciences’ Division of Pre-Clinical Oncology are investigating whether modifying a harmless type of the bacterium, Salmonella typhimurium, can produce molecules which kill cancer cells in osteosarcoma, a primary bone cancer. The scientists are using a clinically safe form of the bacterium which has been found to localise to tumour tissue rather than healthy tissue.

Leading the research, Dr Teresa Coughlan, said: ”Developing a treatment that effectively targets cancer cells, but doesn’t damage healthy cells is the Holy Grail for bone cancer treatment. We are excited by this project as potentially it could result in a new treatment for osteosarcoma, which typically has a poor prognosis.”

Osteosarcoma (OS) is the most common type of primary bone cancer and although rare, can be particularly distressing because it affects mostly children and adolescents. Cases tend to have a poor outlook because the cancer often does not respond well to the treatments currently available. There have been few new treatments for OS in the past 20 years and more research and techniques to fight it are urgently needed as more than 2,000 children and young people are diagnosed with the disease every year in the UK.

A main challenge in developing better treatments for bone cancer is finding a much more effective way of targeting anti-cancer drugs at the tumour. Many drugs are given by intravenous injection and use the body’s venous system to reach their target, but tumours in bone tend to have a low blood supply.

Dr Coughlan’s aim is to modify the Salmonella bacteria to act as a vehicle for cancer-killing agents. It’s believed special molecules, called RNA interference molecules, when produced in the bacteria will be more effectively released into malignant cells destroying the levels of cancer-causing molecules there.

It’s hoped this research will eventually lead to a treatment for bone cancer that is better targeted at tumours and doesn’t affect normal, healthy tissue.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk/News/pressreleases/2010/October/BoneCancer.aspx

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>