Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Home tooth bleaching slightly reduces enamel strength

New research shows that human teeth lost some enamel hardness after the application of several different products used in the home to whiten teeth. The study suggests that future generations of such products might be reformulated in an effort to reduce these side effects.

The researchers noted that teeth typically can restore their previous hardness after losing small amounts of enamel calcification. But this is the first study to show at a nanometer scale – measuring in billionths of a meter – how human teeth are affected by the popular home whiteners.

“There is some significant reduction in nano-hardness of enamel, but we are talking on a very minute scale. So even though it may not be visible to the human eye, it’s important for research because that’s how we improve products,” said Shereen Azer, assistant professor of restorative and prosthetic dentistry at Ohio State University and lead author of the study.

Azer and colleagues applied the recommended treatments of five name-brand home whiteners to samples of human teeth and compared the effects to tooth samples that received no treatment. In all cases, the products reduced the hardness of the enamel as well as what is called the elastic modulus or stiffness, a measure of the ability of the tooth surface to bounce back in response to applied force.

Many studies have sought to determine how tooth whitening affects tooth enamel hardness, but results have been inconclusive. Azer said that previous studies measured the loss of enamel hardness in microns, or millionths of a meter, rather than on the nanometer scale used in his study.

“So this just gives us a better understanding of precisely how these products affect human teeth,” he said.

The research is published in a recent issue of the Journal of Dentistry.

Tooth bleaching products contain solutions of various strengths of either hydrogen peroxide or carbamide peroxide, which provide the whitening effect. They bleach teeth by producing unstable free radicals that attack pigment molecules in the organic parts of enamel. The reduction in pigment means the molecules no longer reflect light, so the teeth appear whiter.

Enamel, which is almost entirely inorganic and translucent, appears yellow in most teeth because it reflects the color of the dentin underneath, which is naturally yellow.

“Especially nowadays, people tend to see beauty in white teeth,” Azer said. “And bleaching does have a beautiful effect, but not without side effects.”

The study did not test for two other common side effects of tooth whitening, gum irritation and tooth sensitivity. Azer said these side effects have been addressed by other products, such as toothpastes and treatment gels designed to lessen sensitivity and irritation.

He and colleagues used extracted molars to assemble 65 human tooth samples measuring 4 millimeters square and 2 millimeters deep for the study. Ten samples were used in a pilot study that determined they could achieve accurate results for the research under dry conditions rather than wet conditions simulating the presence of saliva.

Of the remaining samples, five were left untreated, and 50 were divided into five groups of 10 each to undergo treatment.

The researchers used whitening strips on two groups of samples and trays filled with whitening gel on three groups. The treatment times included up to 60 minutes once per day or 60 minutes twice per day according to manufacturer recommendations. All treatments lasted for three weeks except for one tray method, which lasted 10 days.

The treatments included both over-the-counter and professionally provided products to be used in the home.

The scientists used a specialized tool to apply force to test the enamel hardness and stiffness (the surface ability to bounce back), and an atomic force microscope to observe the tiny nanometer-scale effects on the teeth.

The average loss of enamel ranged from 1.2 to 2 nanometers on the treated teeth. The control teeth, on average, actually gained 0.4 nanometers of hardness in comparison over the treatment time frame. The surface ability to bounce back from applied force was reduced by an average of between 6 percent and 18.8 percent among the treated teeth, depending on the type of treatment.

Among the different products, most of the reductions in hardness and elastic modulus were similar. However, there was a significant difference between one strip treatment method and one tray method, with the tray method reducing enamel hardness more dramatically than the strip treatment.

Enamel is the hardest structure in the human body. It protects teeth and maintains the integrity of the bite. But enamel is subject to abrasion by certain products and even too-vigorous brushing, which is why it is important to figure out ways to reduce damage to this part of the tooth, Azer said.

“In the case of these products, manufacturers might be able to alter the concentrations of the materials and the vehicles used to apply the bleach,” he said.

The study did not address how to restore hardness to bleached teeth, but Azer noted that extensive research has indicated that fluoride treatments, including the use of fluoride toothpaste, can promote enamel remineralization.

The products used in the study were Crest Whitestrips Premium Plus, Crest Whitestrips Supreme, Nite White ACP, Oral B Rembrandt and Treswhite Opalescence. The final three are tray treatments.

Azer conducted the research with Camilo Machado and Robert Rashid of the Division of Restorative and Prosthetic Dentistry and Eliana Sanchez of the Division of Primary Care, all in Ohio State’s College of Dentistry.

Contact: Shereen Azer, (614) 292-7467;
Written by Emily Caldwell, (614) 292-8310;

Shereen Azer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>