Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hollow mask illusion fails to fool schizophrenia patients

08.04.2009
Patients with schizophrenia are able to correctly see through an illusion known as the ‘hollow mask’ illusion, probably because their brain disconnects ‘what the eyes see’ from what ‘the brain thinks it is seeing’, according to a joint UK and German study published in the journal NeuroImage. The findings shed light on why cannabis users may also be less deceived by the illusion whilst on the drug.

People with schizophrenia, a mental illness affecting about one per cent of the population, are known to be immune to certain vision illusions.

The latest study confirms that patients with schizophrenia are not fooled by the ‘hollow mask’ illusion, and that this may relate to a difference in the way two parts of their brains communicate with each other – the ‘bottom-up’ process of collecting incoming visual information from the eyes, and the ‘top-down’ process of interpreting this information.

Illusions occur when the brain interprets incoming sensory information on the basis of its context and a person’s previous experience, so called top-down processing. Sometimes this process can mean that people’s perception of an object is quite different to reality – a phenomenon often exploited by magicians. The new study, by scientists at the Hannover Medical School in Germany and UCL Institute of Cognitive Neuroscience in the UK, suggests that patients with schizophrenia rely considerably less on top-down processing during perception.

The study used a variation on the three-dimensional ‘hollow mask’ illusion. In this illusion, a hollow mask of a face (pointing inwards, or concave) appears as a normal face (pointing outwards, or convex). During the experiment, 3D normal faces and hollow faces were shown to patients with schizophrenia and control volunteers while they lay inside an fMRI brain scanner, which monitored their brain responses.

As expected, all 16 control volunteers perceived the hollow mask as a normal face – mis-categorising the illusion faces 99 percent of the time. By contrast, all 13 patients with schizophrenia could routinely distinguish between hollow and normal faces, with an average of only six percent mis-categorisation errors for illusion faces.

The results of the brain imaging analysis suggested that in the healthy volunteers, connectivity between two parts of the brain, the parietal cortex involved in top-down control, particularly spatial attention, and the lateral occipital cortex involved in bottom-up processing of visual information, increased when the hollow faces were presented. In the patients with schizophrenia, this connectivity change did not occur. These results suggest that patients with schizophrenia have difficulty coordinating responses between different brain areas, also known as ‘dysconnectivity’, and that this may contribute to their immunity to visual illusions. The research group is now investigating dysconnectivity in schizophrenia further, which will hopefully advance our understanding of this disorder.

Danai Dima, Hannover Medical School, says: “The term ‘schizophrenia’ was coined almost a century ago to mean the splitting of different mental domains, but the idea has now shifted more towards connectivity between brain areas. The prevailing theory is that perception principally comprises three components: firstly, sensory input (bottom-up); secondly, the internal production of concepts (top-down); and thirdly, a control (a ‘censor’ component), which covers interaction between the two first components. Our study provides further evidence of ‘dysconnectivity’ between these components in the brains of people with schizophrenia.”

Dr Jonathan Roiser, UCL Institute of Cognitive Neuroscience, says: “Our findings also shed light on studies of visual illusions which have used psychomimetics – drugs that mimic the symptoms of psychosis. Studies using natural or synthetic tetrahydrocannabinol (THC), the ingredient of cannabis resin responsible for its psychotic-like effects, have found that people under the influence of cannabis are also less deceived by the hollow mask illusion. It may be that THC causes a temporary “disconnection” between brain areas, similar to that seen in patients with schizophrenia, though this hypothesis needs to be tested in further research.”

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>