Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holding Breath for Several Minutes Elevates Marker for Brain Damage

06.08.2009
Study Adds to Questions about Whether Free-Diving Is Safe

Divers who held their breath for several minutes had elevated levels of a protein that can signal brain damage, according to a new study from the Journal of Applied Physiology. However, the appearance of the protein, S100B, was transient and leaves open the question of whether lengthy apnea (breath-holding) can damage the brain over the long term.

“The results indicate that prolonged, voluntary apnea affects the integrity of the central nervous system, and may have cumulative effects,” the Swedish researchers said. The release of S100B into the blood suggests that holding one’s breath for a long time disrupts the blood-brain barrier, they said.

The concern is that repetitive exposures to severe hypoxia (lowered oxygen supply), such as that experienced by individuals training and competing in static apnea diving events, could cause neurological damage over time. The researchers recommended further research on free divers that would begin early in their careers and follow them for years to monitor their neurological function.

The study is “Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations.” The researchers are Johan P.A. Andersson, Mats H. Linér and Henrik Jönsson, of Lund University in Sweden. The American Physiological Society published the study.

Free diving is a tradition

There is a tradition of breath-hold diving in Japan and some other parts of the world that goes back hundreds of years, although the occupation has been dying out. These divers harvest seaweed, shellfish and other growth from the sea bottom, diving dozens of times per day. Some divers routinely dive to depths of 90 feet on a single breath while others dive in the 15-30 foot range.

More recently, breath-hold diving has become a competitive sport. Competitive events include how long divers can remain underwater, how far they can swim underwater and how deep they can dive. Participants must undergo intense training to increase their lung capacity while learning crucial safety measures.

Breath-hold diving often leads to hypoxia, elevated blood pressure, slowed heartbeat and other physiological changes. However, whether the sport causes any long-term damage to the brain has remained a point of contention. Studies have produced conflicting results.

The authors of this study see cause for concern, noting that in six international competitions between 1998 and 2004, 10% of the contestants in the static apnea events were disqualified after they lost either motor control or consciousness. In this event, participants float face down on the water for as long as possible without coming up for air. The world record for the event is 11 minutes 35 seconds. Divers at international competitions routinely hold their breath 4-7 minutes.

“Whether such hypoxic episodes are associated with a risk for brain damage in these athletes remains to be established,” the researchers said. “Studying the changes in established biochemical markers of brain damage after such performances offers the possibility to address this question.”

Breath hold experiment

Nine competitive breath-hold divers (eight men and one woman) took part in this study, along with six individuals who had limited experience with breath-hold diving. The nine competitive divers formed the experimental group, while the non-divers acted as the controls

The researchers told the participants to lie on their backs on a cot and hold their breath for as long as possible. The conditions were dry, but mimicked a static apnea dive in which the divers float face down holding their breath. The divers used whatever preparatory techniques they customarily use in competition, such as hyperventilating, insufflation (filling the lungs with as much air as possible) and breath-holding warm-ups.

The researchers took arterial blood samples from a catheter inserted into the artery that runs through the wrist. They took samples before the breath hold, at the end of the breath hold and at fixed intervals for the two hours following the end of the breath hold. The researchers also measured arterial blood gases. They did the same measurements on the individuals in the control group, but the controls rested on their backs for the entire experiment, without performing the breath hold or the warm-ups.

Among the findings of this experiment:

The average breath-hold time was 5 minutes 35 seconds. The longest was 6 minutes 43 seconds and the shortest was 4 minutes 41 seconds.

The marker for brain damage, S100B, rose in seven of the nine divers.

The controls showed no change in S100B

On average, S100B rose 37% within 10 minutes after the apnea ended.

S100B levels returned to normal within two hours for all the participants.

The divers showed signs of asphyxia, that is, blood oxygen levels fell, while carbon dioxide levels rose.

The S100B levels, while elevated, were well below levels associated with brain injury. In brain-injured patients, the presence of S100B in the blood can increase by several hundred percent.

In addition, the elevation of S100B was more transient in the divers, compared to people who suffered brain injury. The divers had a quick return to normal, while S100B levels peak in 24 hours in brain-injured patients.

The transient nature of the increase in S100B among the divers probably indicates the blood-brain barrier has been compromised, allowing the protein to escape from the fluid in the brain into the circulation. The blood-brain barrier controls what passes between the brain and the circulation. S100B would normally remain in the brain.

Other sports have also been associated with a similar transient increase in S100B, the researchers noted, including boxing, headings in soccer, running and long-distance swimming. One study also reported that individuals suffering sleep apnea had elevated levels of S100B in the morning, although another study indicated there had been no change in S100B overnight.

Editor’s Notes: To arrange an interview with Dr. Andersson, please contact Christine Guilfoy (301) 634-7253 or at cguilfoy@the-aps.org.

The link to the study is at: http://jap.physiology.org/cgi/search?sortspec=relevance&author1=Andersson&fulltext=divers&pubdate_year=2009&volume=&firstpage=

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Christine Guilfoy | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>