Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV Causes Rapid Aging in Key Infection-Fighting Cells

31.01.2011
In the early years of the AIDS epidemic, being infected with the virus that causes the disease was considered a virtual death sentence. But with the development of antiretroviral therapy, many with HIV are now living much longer. In fact, it is estimated that by 2015, about half of all HIV-positive individuals will be older than 50.

Yet those over 50 also progress to AIDS faster than adults in their 20s or 30s. And those in the younger age bracket — even those responding well to antiretroviral therapy — still exhibit illnesses and clinical conditions commonly associated with older people, such as certain cancers and liver diseases. For the most part, the reasons for this have remained a mystery.

But a UCLA AIDS Institute study published Jan. 26 in the online journal PLoS ONE suggests a partial explanation, showing that HIV causes a specific subset of CD4+ "helper" T-cells — which play an important role in the body's response to infection — to age rapidly, by as much as 20 to 30 years over a three-year period.

In the study, researchers witnessed a decline in CD4+ T-cell numbers and, most strikingly, found that in the surviving T-cells, the HIV virus caused rapid and drastic shortening of the ends of chromosomes, called telomeres, which protect the chromosomes and prevent them from fusing together, much like plastic tips keep shoelaces from unraveling. Telomeres become progressively shorter during natural cell division; when they become too short, cells do not function properly.

"Our findings have important implications for the health of both young and old HIV-1–infected adults," said lead investigator Tammy M. Rickabaugh, an assistant research immunologist in the division of hematology and oncology at the David Geffen School of Medicine at UCLA. "They underscore the importance of developing new approaches to boost immune function to complement current treatments, which are exclusively directed against the virus."

The researchers examined two subsets of CD4+ T-cells (CD45RA+ CD31+ and CD45RA+ CD31-) in two groups of individuals — those aged 20–32 and those aged 39–58 — who had been infected with HIV for one to three years and who had not been treated with antiretroviral therapy. They compared these two groups with samples from age-matched controls who were HIV seronegative.

The researchers specifically focused on "naive" T-cells — those that had not previously encountered any pathogens and thus act as a reserve against future infections and cancers. They found that in individuals infected with HIV-1, these cells underwent unexpectedly rapid aging — the equivalent of 20 to 30 years of aging within three years of infection. They also found that the number of CD31- T-cells, which are more quickly pulled into the fight against new pathogens, had fallen drastically.

The researchers also investigated whether appropriate treatment could reverse this aging effect. They examined cells from HIV-positive individuals who had been on antiretroviral therapy for two years and whose therapy had successfully kept HIV-1 under control. They found that while the therapy kept their viral loads at undetectable levels, it did not entirely restore their immune systems, suggesting a reason why younger HIV-positive people still become ill with conditions more common to older people.

"Taken together, our results help to explain some of the clinical observations that have been documented in HIV-infected people and emphasize the need for developing therapeutic approaches directed at improving the naive immune cell compartment," said senior investigator Beth D. Jamieson, an associate professor of medicine in the division of hematology and oncology at the David Geffen School of Medicine at UCLA. "This is critically important in light of the demographic shift of HIV-infected persons."

Grants from the National Institute of Allergy and Infectious Diseases; the National Institute on Aging; the National Cancer Institute; the National Heart, Lung and Blood Institute; UCLA's Jonsson Comprehensive Cancer Center; the UCLA AIDS Institute; and the David Geffen School of Medicine at UCLA funded this study.

Additional researchers included Ryan D. Kilpatrick, Lance E. Hultin, Patricia M. Hultin, Mary Ann Hausner, Catherine A. Sugar, Roger Detels and Rita B. Effros of UCLA; Keri N. Althoff and Joseph B. Margolick of Johns Hopkins University; Charles R. Rinaldo of the University of Pittsburgh; and John Phair of Northwestern University.

The UCLA AIDS Institute, established in 1992, is a multidisciplinary think tank drawing on the skills of top-flight researchers in the worldwide fight against HIV and AIDS, the first cases of which were reported in 1981 by UCLA physicians. Institute members include researchers in virology and immunology, genetics, cancer, neurology, ophthalmology, epidemiology, social sciences, public health, nursing and disease prevention. Their findings have led to advances in treating HIV, as well as other diseases, such as hepatitis B and C, influenza and cancer.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Enrique Rivero | Newswise Science News
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>