Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


HIV Causes Rapid Aging in Key Infection-Fighting Cells

In the early years of the AIDS epidemic, being infected with the virus that causes the disease was considered a virtual death sentence. But with the development of antiretroviral therapy, many with HIV are now living much longer. In fact, it is estimated that by 2015, about half of all HIV-positive individuals will be older than 50.

Yet those over 50 also progress to AIDS faster than adults in their 20s or 30s. And those in the younger age bracket — even those responding well to antiretroviral therapy — still exhibit illnesses and clinical conditions commonly associated with older people, such as certain cancers and liver diseases. For the most part, the reasons for this have remained a mystery.

But a UCLA AIDS Institute study published Jan. 26 in the online journal PLoS ONE suggests a partial explanation, showing that HIV causes a specific subset of CD4+ "helper" T-cells — which play an important role in the body's response to infection — to age rapidly, by as much as 20 to 30 years over a three-year period.

In the study, researchers witnessed a decline in CD4+ T-cell numbers and, most strikingly, found that in the surviving T-cells, the HIV virus caused rapid and drastic shortening of the ends of chromosomes, called telomeres, which protect the chromosomes and prevent them from fusing together, much like plastic tips keep shoelaces from unraveling. Telomeres become progressively shorter during natural cell division; when they become too short, cells do not function properly.

"Our findings have important implications for the health of both young and old HIV-1–infected adults," said lead investigator Tammy M. Rickabaugh, an assistant research immunologist in the division of hematology and oncology at the David Geffen School of Medicine at UCLA. "They underscore the importance of developing new approaches to boost immune function to complement current treatments, which are exclusively directed against the virus."

The researchers examined two subsets of CD4+ T-cells (CD45RA+ CD31+ and CD45RA+ CD31-) in two groups of individuals — those aged 20–32 and those aged 39–58 — who had been infected with HIV for one to three years and who had not been treated with antiretroviral therapy. They compared these two groups with samples from age-matched controls who were HIV seronegative.

The researchers specifically focused on "naive" T-cells — those that had not previously encountered any pathogens and thus act as a reserve against future infections and cancers. They found that in individuals infected with HIV-1, these cells underwent unexpectedly rapid aging — the equivalent of 20 to 30 years of aging within three years of infection. They also found that the number of CD31- T-cells, which are more quickly pulled into the fight against new pathogens, had fallen drastically.

The researchers also investigated whether appropriate treatment could reverse this aging effect. They examined cells from HIV-positive individuals who had been on antiretroviral therapy for two years and whose therapy had successfully kept HIV-1 under control. They found that while the therapy kept their viral loads at undetectable levels, it did not entirely restore their immune systems, suggesting a reason why younger HIV-positive people still become ill with conditions more common to older people.

"Taken together, our results help to explain some of the clinical observations that have been documented in HIV-infected people and emphasize the need for developing therapeutic approaches directed at improving the naive immune cell compartment," said senior investigator Beth D. Jamieson, an associate professor of medicine in the division of hematology and oncology at the David Geffen School of Medicine at UCLA. "This is critically important in light of the demographic shift of HIV-infected persons."

Grants from the National Institute of Allergy and Infectious Diseases; the National Institute on Aging; the National Cancer Institute; the National Heart, Lung and Blood Institute; UCLA's Jonsson Comprehensive Cancer Center; the UCLA AIDS Institute; and the David Geffen School of Medicine at UCLA funded this study.

Additional researchers included Ryan D. Kilpatrick, Lance E. Hultin, Patricia M. Hultin, Mary Ann Hausner, Catherine A. Sugar, Roger Detels and Rita B. Effros of UCLA; Keri N. Althoff and Joseph B. Margolick of Johns Hopkins University; Charles R. Rinaldo of the University of Pittsburgh; and John Phair of Northwestern University.

The UCLA AIDS Institute, established in 1992, is a multidisciplinary think tank drawing on the skills of top-flight researchers in the worldwide fight against HIV and AIDS, the first cases of which were reported in 1981 by UCLA physicians. Institute members include researchers in virology and immunology, genetics, cancer, neurology, ophthalmology, epidemiology, social sciences, public health, nursing and disease prevention. Their findings have led to advances in treating HIV, as well as other diseases, such as hepatitis B and C, influenza and cancer.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Enrique Rivero | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>