Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-sugar diet no problem for genetic mutants

07.10.2014

Working with worms, scientists find a link between a genetic mutation and how diets are processed

Imagine being able to take a pill that lets you eat all of the ice cream, cookies, and cakes that you wanted – without gaining any weight.

New research from USC suggests that dream may not be impossible. A team of scientists led by Sean Curran of the USC Davis School of Gerontology and the Keck School of Medicine of USC found a new way to suppress the obesity that accompanies a high-sugar diet, pinning it down to a key gene that pharmaceutical companies have already developed drugs to target.

So far, Curran's work has been solely on the worm Caenorhabditis elegans and human cells in a petri dish – but the genetic pathway he studied is found in almost all animals from yeast to humans. Next, he plans to test his findings in mice.

Curran's research is outlined in a study that will be published on Oct. 6 by Nature Communications.

Building on previous work with C. elegans, Curran and his colleagues found that certain genetic mutants – those with a hyperactive SKN-1 gene – could be fed incredibly high-sugar diets without gaining any weight, while regular C. elegans ballooned on the same diet.

"The high-sugar diet that the bacteria ate was the equivalent of a human eating the Western diet," Curran said, referring to the diet favored by the Western world, characterized by high-fat and high-sugar foods, like burgers, fries and soda.

The SKN-1 gene also exists in humans, where it is called Nrf2, suggesting that the findings might translate, he said. The Nrf2 protein, a "transcription factor" that binds to a specific sequence of DNA to control the ability of cells to detox or repair damage when exposed to chemically reactive oxygen (a common threat to cells' well being), has been well studied in mammals.

Pharmaceutical companies have already worked to develop small-molecule drugs that target Nrf2, in hopes that it will produce more anti-oxidants and slow aging.

Though the promise of a pill to help control your body's response to food is enticing, it is not without risk, Curran said. Increased Nrf2 function has been linked to aggressive cancers.

"Perhaps it is a matter of timing and location," Curran said. "If we can acutely activate Nrf2 in specific tissues when needed then maybe we can take advantage of its potential benefits."###

Curran, the corresponding author on the study, collaborated with Shanshan Pang and Jennifer Paek of USC Davis; and Dana Lynn and Jacqueline Lo of USC Davis and the USC Dornsife College of Letters, Arts and Sciences.

This research was funded by the National Institutes of Health (P40 OD010440 and AG032308), the Ellison Medical Foundation, and the American Federation of Aging Research.

University of Southern California | Eurek Alert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>