Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High risk of Parkinson's disease for people exposed to pesticides near workplace

27.05.2011
Study first to implicate pesticide ziram as possible cause for disease

In April 2009, researchers at UCLA announced they had discovered a link between Parkinson's disease and two chemicals commonly sprayed on crops to fight pests.

That epidemiological study didn't examine farmers who constantly work with pesticides but people who simply lived near where farm fields were sprayed with the fungicide maneb and the herbicide paraquat. It found that the risk for Parkinson's disease for these people increased by 75 percent.

Now a follow-up study adds two new twists. Once again the researchers returned to California's fertile Central Valley, and for the first time have implicated a third pesticide, ziram, in the pathology of Parkinson's disease. Second, instead of looking just at whether people lived near fields that were sprayed, they looked at where people worked, including teachers, firefighters and clerks who worked near, but not in, the fields.

They found that the combined exposure to ziram, maneb and paraquat near any workplace increased the risk of Parkinson's disease (PD) threefold, while combined exposure to ziram and paraquat alone was associated with an 80 percent increase in risk. The results appear in the current online edition of the European Journal of Epidemiology.

"Our estimates of risk for ambient exposure in the workplaces were actually greater than for exposure at residences," said Dr. Beate Ritz, senior author and a professor of epidemiology at the UCLA School of Public Health. "And, of course, people who both live and work near these fields experience the greatest PD risk. These workplace results give us independent confirmation of our earlier work that focused only on residences, and of the damage these chemicals are doing."

In addition, Ritz noted, this is the first study that provides strong evidence in humans that the combination of the three chemicals confers a greater risk of Parkinson's than exposure to the individual chemicals alone. Because these pesticides affect different mechanisms leading to cell death, they may act together to increase the risk of developing the disorder: Those exposed to all three experienced the greatest increase in risk.

"Our results suggest that pesticides affecting different cellular mechanisms that contribute to dopaminergic neuron death may act together to increase the risk of PD considerably," said Ritz, who holds a joint appointment in the UCLA Department of Neurology.

Scientists knew that in animal models and cell cultures, such pesticides trigger a neurodegenerative process that leads to Parkinson's, a degenerative disorder of the central nervous system that often impairs motor skills, speech and other functions and for which there is no cure. The disease has been reported to occur at high rates among farmers and in rural populations, contributing to the hypothesis that agricultural pesticides may be partially responsible.

In the past, data on human exposure had been unavailable, largely because it had been too hard to measure an individual's environmental exposure to any specific pesticide.

"This stuff drifts," Ritz said. "It's borne by the wind and can wind up on plants and animals, float into open doorways or kitchen windows — up to several hundred meters from the fields."

So several years ago, Ritz and her colleagues developed a geographic information system–based tool that estimates human exposure to pesticides applied to agricultural crops, according to the distance from fields on which pesticides are sprayed. This GIS tool combined land-use maps and pesticide-use reporting data from the state of California. Each pesticide-use record includes the name of the pesticide's active ingredient, the amount applied, the crop, the acreage of the field, the application method and the date of application.

From 1998 to 2007, the researchers enrolled 362 people with Parkinson's and 341 controls living in the Central Valley, then obtained historical occupational and residential addresses from all the study participants. Employing their geographic information system model, they estimated ambient exposures to the pesticides ziram, maneb and paraquat, both at work and home, from 1974 to 1999.

The results reaffirmed what their previous research had suggested, that the data, "suggests that the critical window of exposure to toxicants may have occurred years before the onset of motor symptoms, when a diagnosis of Parkinson's is made."

Knowing that the fungicide ziram is commonly used in agriculture and suspecting its relationship to Parkinson's, Ritz turned to her colleague Jeff Bronstein, a UCLA professor of neurology and co-author of the study, for confirmation. His lab performed a genetic screen using genetically modified cells to identify pesticides that inhibit the breakdown of important proteins such as alpha-synuclein. Ziram was one of the best inhibitors they identified; they found, in fact, that synuclein accumulated in dopamine neurons, selectively killing them. When it was given systemically to rodents, it reproduced many of the features of Parkinson's disease.

"So the present study clearly demonstrates that exposure to ziram in humans is associated with a significant increased risk of developing PD," Bronstein said.

Funding for the study was provided by the National Institute of Environmental Health Sciences, he National Institute of Neurological Disorders and Stroke, the U.S. Department of Defense Prostate Cancer Research Program, and the American Parkinson's Disease Association.

Other authors included lead author Anthony Wang (UCLA), Sadie Costello (UC Berkeley) and Myles Cockburn and Xinbo Zhang (University of Southern California). The authors declare no conflict of interest.

The UCLA School of Public Health is dedicated to enhancing the public's health by conducting innovative research; training future leaders and health professionals; translating research into policy and practice; and serving local, national and international communities.

For more news, visit the UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>