Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High risk of Parkinson's disease for people exposed to pesticides near workplace

27.05.2011
Study first to implicate pesticide ziram as possible cause for disease

In April 2009, researchers at UCLA announced they had discovered a link between Parkinson's disease and two chemicals commonly sprayed on crops to fight pests.

That epidemiological study didn't examine farmers who constantly work with pesticides but people who simply lived near where farm fields were sprayed with the fungicide maneb and the herbicide paraquat. It found that the risk for Parkinson's disease for these people increased by 75 percent.

Now a follow-up study adds two new twists. Once again the researchers returned to California's fertile Central Valley, and for the first time have implicated a third pesticide, ziram, in the pathology of Parkinson's disease. Second, instead of looking just at whether people lived near fields that were sprayed, they looked at where people worked, including teachers, firefighters and clerks who worked near, but not in, the fields.

They found that the combined exposure to ziram, maneb and paraquat near any workplace increased the risk of Parkinson's disease (PD) threefold, while combined exposure to ziram and paraquat alone was associated with an 80 percent increase in risk. The results appear in the current online edition of the European Journal of Epidemiology.

"Our estimates of risk for ambient exposure in the workplaces were actually greater than for exposure at residences," said Dr. Beate Ritz, senior author and a professor of epidemiology at the UCLA School of Public Health. "And, of course, people who both live and work near these fields experience the greatest PD risk. These workplace results give us independent confirmation of our earlier work that focused only on residences, and of the damage these chemicals are doing."

In addition, Ritz noted, this is the first study that provides strong evidence in humans that the combination of the three chemicals confers a greater risk of Parkinson's than exposure to the individual chemicals alone. Because these pesticides affect different mechanisms leading to cell death, they may act together to increase the risk of developing the disorder: Those exposed to all three experienced the greatest increase in risk.

"Our results suggest that pesticides affecting different cellular mechanisms that contribute to dopaminergic neuron death may act together to increase the risk of PD considerably," said Ritz, who holds a joint appointment in the UCLA Department of Neurology.

Scientists knew that in animal models and cell cultures, such pesticides trigger a neurodegenerative process that leads to Parkinson's, a degenerative disorder of the central nervous system that often impairs motor skills, speech and other functions and for which there is no cure. The disease has been reported to occur at high rates among farmers and in rural populations, contributing to the hypothesis that agricultural pesticides may be partially responsible.

In the past, data on human exposure had been unavailable, largely because it had been too hard to measure an individual's environmental exposure to any specific pesticide.

"This stuff drifts," Ritz said. "It's borne by the wind and can wind up on plants and animals, float into open doorways or kitchen windows — up to several hundred meters from the fields."

So several years ago, Ritz and her colleagues developed a geographic information system–based tool that estimates human exposure to pesticides applied to agricultural crops, according to the distance from fields on which pesticides are sprayed. This GIS tool combined land-use maps and pesticide-use reporting data from the state of California. Each pesticide-use record includes the name of the pesticide's active ingredient, the amount applied, the crop, the acreage of the field, the application method and the date of application.

From 1998 to 2007, the researchers enrolled 362 people with Parkinson's and 341 controls living in the Central Valley, then obtained historical occupational and residential addresses from all the study participants. Employing their geographic information system model, they estimated ambient exposures to the pesticides ziram, maneb and paraquat, both at work and home, from 1974 to 1999.

The results reaffirmed what their previous research had suggested, that the data, "suggests that the critical window of exposure to toxicants may have occurred years before the onset of motor symptoms, when a diagnosis of Parkinson's is made."

Knowing that the fungicide ziram is commonly used in agriculture and suspecting its relationship to Parkinson's, Ritz turned to her colleague Jeff Bronstein, a UCLA professor of neurology and co-author of the study, for confirmation. His lab performed a genetic screen using genetically modified cells to identify pesticides that inhibit the breakdown of important proteins such as alpha-synuclein. Ziram was one of the best inhibitors they identified; they found, in fact, that synuclein accumulated in dopamine neurons, selectively killing them. When it was given systemically to rodents, it reproduced many of the features of Parkinson's disease.

"So the present study clearly demonstrates that exposure to ziram in humans is associated with a significant increased risk of developing PD," Bronstein said.

Funding for the study was provided by the National Institute of Environmental Health Sciences, he National Institute of Neurological Disorders and Stroke, the U.S. Department of Defense Prostate Cancer Research Program, and the American Parkinson's Disease Association.

Other authors included lead author Anthony Wang (UCLA), Sadie Costello (UC Berkeley) and Myles Cockburn and Xinbo Zhang (University of Southern California). The authors declare no conflict of interest.

The UCLA School of Public Health is dedicated to enhancing the public's health by conducting innovative research; training future leaders and health professionals; translating research into policy and practice; and serving local, national and international communities.

For more news, visit the UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>