Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High levels of tau protein linked to poor recovery after brain injury

14.12.2011
High levels of tau protein in fluid bathing the brain are linked to poor recovery after head trauma, according to a study from Washington University School of Medicine in St. Louis and the Fondazione IRCCS Ca Granda-Ospedale Maggiore Policlinico in Milan, Italy.

“We are particularly interested in finding ways to predict prognosis after traumatic brain injury,” says senior author David L. Brody, MD, PhD, assistant professor of neurology at Washington University. “Right now, it’s very hard to tell who is going to live, who is going to die, who is going to have severe disability and who is going to recover well.”

The results, reported online Nov. 23 in the journal Brain, show that initial tau levels in all injured patients are high and drop off over time. Those who had the highest tau levels in the first 12 hours of monitoring had worse outcomes six to 12 months later. Recovery was measured using the eight-category Extended Glasgow Outcome Scale (GOS-E): 1 indicates death, 2 is vegetative state, 3-4 is severe disability, 5-6 is moderate disability, and 7-8 is good recovery.

“If we can identify early who is likely to have a poor outcome, we can design better clinical trials that don’t include those patients who are going to do fine,” he says.

Brody says the correlation between high tau levels and worse outcome is not perfect, at 0.6 (with a perfect correlation being 1 and no correlation being 0), but they found it to be a better predictor of recovery than markers currently used, including measures of glucose, glutamate and the ratio of lactate to pyruvate in the brain.

Tau is part of the cellular scaffolding that supports and protects the brain’s nerve cells, especially the cells’ long, thin “wires” known as axons that connect different parts of the brain. Abnormal tau protein that forms clumps called “tangles” is also a marker of some forms of dementia, including Alzheimer’s disease.

To fill its structural role, tau is inside nerve cells. Therefore, Brody and his colleagues suspected that the amount of tau outside the cells, in the fluid bathing the brain’s neurons, might be a good indicator of how badly brain axons are damaged after a head injury.

The researchers studied 16 patients with traumatic brain injury and used a technique called microdialysis to monitor tau levels in the brain every one to two hours. Microdialysis involves inserting a thin tube called a catheter into the brain to collect fluid samples. In this study, the catheter was always placed in conjunction with another procedure deemed necessary for the patient’s care, such as implanting a device to measure cranial pressure.

CT scans of the patients’ brains guided catheter placement. In some patients the location of the injury was obvious and the catheter was placed nearby. In others, no injury was apparent on the scan and the catheters were simply placed in the same consistent location.

None of the 16 patients in the study died as a result of the brain trauma, though one died from unrelated causes about two months after the injury and was not included in the final analysis. In addition, no patient was in a persistent vegetative state at the six-month assessment of outcome (a GOS-E of 2).

Of the 10 patients with a GOS-E of 3 or 4 (lower and upper severe disability), seven had initial tau levels above 10,000 picograms per milliliter. Not fitting the pattern, the remaining three had levels below 10,000. The patient with a GOS-E of 5 (lower moderate disability) was just above the 10,000 mark. Of the four patients with a GOS-E of 6 or 7 (upper moderate disability and lower good recovery), all four had initial tau levels below 10,000. No patient received a GOS-E of 8 (upper good recovery).

Though initial tau levels predicted recovery in the surviving 15 patients better than current clinical measures, Brody says the results need to be confirmed in a larger study that controls for such variables as age and type of injury.

But if confirmed, measuring tau levels by microdialysis could become an additional tool for clinicians assessing brain injury. According to Brody, microdialysis provides some information that imaging does not, including changes over time. Microdialysis is also possible in severely injured patients who can’t be moved to a scanner. But microdialysis only samples a small area, while images provide a view of the whole brain.

“Imaging and microdialysis have strengths and weaknesses that complement each other,” Brody says. “Ongoing work with our collaborators in Italy is to assess axonal injury with both specialized imaging and microdialysis in the same patients.”

Magnoni S, Esparza TJ, Conte V, Carbonara M, Carrabba G, Holtzman DM, Zipfel GJ, Stocchetti N, Brody DL. Tau elevations in the brain extracellular space correlate with reduced amyloid-beta levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain. Nov. 2011.

This work was supported by the Burroughs Wellcome Career Award in the Biomedical Sciences, the National Institutes of Health (NIH) and the Fondazione IRCCS Ca Granda-Ospedale Maggiore Policlinico.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>