Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High fiber diet prevents prostate cancer progression

10.01.2013
A high-fiber diet may have the clinical potential to control the progression of prostate cancer in patients diagnosed in early stages of the disease.
The rate of prostate cancer occurrence in Asian cultures is similar to the rate in Western cultures, but in the West, prostate cancer tends to progress, whereas in Asian cultures it does not. Why? A University of Colorado Cancer Center study published in the January 2013 issue of the journal Cancer Prevention Research shows that the answer may be a high-fiber diet.

The study compared mice fed with of inositol hexaphosphate (IP6), a major component of high-fiber diets, to control mice that were not. Then the study used MRI to monitor the progression of prostate cancer in these models.

“The study’s results were really rather profound. We saw dramatically reduced tumor volumes, primarily due to the anti-angiogenic effects of IP6,” says Komal Raina, PhD, research instructor at the Skaggs School of Pharmacy and Pharmaceutical Sciences, working in the lab of CU Cancer Center investigator and School of Pharmacy faculty member, Rajesh Agarwal, PhD.

Basically, feeding with the active ingredient of a high-fiber diet kept prostate tumors from making the new blood vessels they needed to supply themselves with energy. Without this energy, prostate cancer couldn’t grow. Likewise, treatment with IP6 slowed the rate at which prostate cancers metabolized glucose.

Possible mechanisms for the effect of IP6 against metabolism include a reduction in a protein called GLUT-4, which is instrumental in transporting glucose.

“Researchers have long been looking for genetic variations between Asian and Western peoples that could explain the difference in prostate cancer progression rates, but now it seems as if the difference may not be genetic but dietary. Asian cultures get IP6 whereas Western cultures generally do not,” Raina says.

The research provides the cover image of this month’s issue of the journal.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>