Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-altitude research advances low-altitude medicine

05.05.2010
A special issue of Progress in Cardiovascular Diseases

High altitude medicine is a "natural research laboratory" for the study of cardiovascular physiology and pathophysiology. As such, it can shed light on conditions and diseases that mimic the low oxygen content of the atmosphere at the top of mountains.

Yves Allemann, MD, FESC, Swiss Cardiovascular Center, University Hospital, Bern, and Urs Scherrer, MD, Centre Hospitalier Universitaire Vaudois, Lausanne, have assembled an international group of leading authorities to contribute to a special issue of Progress in Cardiovascular Diseases dedicated to high-altitude medicine and novel insights into disease mechanisms provided by high-altitude research.

"We have demonstrated that in recent years, the scope of high-altitude research has broadened considerably, because it has become clear that high-altitude offers a unique opportunity to study fundamental mechanisms of disease," according to Guest Editors Allemann and Scherrer. "During the past decade, high-altitude studies have elucidated fundamental novel mechanisms involved in the pathogenesis of lung edema and hypoxic pulmonary hypertension. The new knowledge generated by these high-altitude studies has already been transferred to the bedside of patients having these problems at low altitude. Second and equally important, we have shown that high-altitude exposure facilitates the detection of vascular dysfunction in humans. Capitalizing on this observation, high-altitude exposure of young apparently healthy children has allowed demonstrating fetal programming of vascular dysfunction at a very early stage. We predict that high-altitude exposure, real or simulated, will become an important tool for the detection of early vascular dysfunction in humans."

At high altitude, lack of oxygen principally affects the respiratory, cardiovascular, neuroendocrine, and renal systems. At low altitude, the same effects may occur, not due to ambient lack of oxygen, but as the result of hypoxemia, deficient oxygenation of the blood, which is the consequence of an organ insufficiency, usually the heart or the lung.

Allemann and Scherrer observe that "the ultimate goal of most high-altitude researchers is not only to understand physiologic (mal)adaptation to hypoxia for the benefit of the millions exposing themselves to high altitude, but to think beyond that, imagining how the knowledge gained from field research at high altitude may be applied to the much larger number of patients with hypoxia/hypoxemia-associated diseases."

The issue provides cutting-edge insight into the current state of research in the field, as well as up-to-date information on the treatment and prevention of the three major high-altitude related diseases: acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema. Articles provide unique information useful to clinician-scientists interested in high-altitude medicine and advice for practicing cardiologists and family doctors who have patients suffering from cardiovascular disease planning to travel to high altitude.

For the clinician, the article by Scherrer et al demonstrates how studies at high altitude have provided important insights into fundamental mechanisms underpinning pulmonary hypertension and pulmonary edema in humans. They show how these insights have been translated into novel approaches for the treatment of patients suffering from these problems at low altitude. Finally, it provides some hints on how the natural research laboratory of high altitude may provide novel insight into cardiovascular disease mechanisms in the future.

For the practicing physician, the article by Rimoldi et al provides concise information and practical advice on how to counsel cardiovascular patients planning to travel to high altitude. There is tremendous variability in individual responses to low oxygen that may be further amplified by external factors such as exercise and stress. These responses may induce major problems in patients with cardiovascular diseases, particularly those with already limited functional reserves at low altitude.

High-altitude pulmonary edema is a life-threatening problem, and physicians need to know how to advise individuals planning high-altitude activities. The article by Maggiorini et al provides up-to-date information on how to treat and prevent this important disease.

Sometimes, a hypoxic environment is deliberately sought by endurance athletes who try to naturally augment their oxygen transport capacity. Should the athlete live high and train low or live low and train high? Vogt and Hoppeler bring together the latest concepts on that topic of debate.

Of course, for high altitude populations in the Andes, the Himalayas, or other mountainous regions around the globe, hypoxia is a natural condition of life. In an article by Stuber et al, they describe the cardiovascular adaptation mechanisms of the Bolivian Aymaras and how these differ from chronic adaptation mechanisms of Caucasians living at the same altitude. These differences and their possible positive or negative long-term consequences on cardiopulmonary health are also discussed.

Adaptation mechanisms to hypoxia can sometimes go beyond their primary goal of maintaining adequate tissue oxygenation. In chronic mountain sickness, affected patients develop, usually insidiously over time, excessive erythrocytosis, hypoxemia, and pulmonary hypertension that can have a major negative impact on quality of life. These cardiovascular consequences of chronic mountain sickness are explained by León-Velarde et al.

These articles appear in a special issue of Progress in Cardiovascular Diseases, High Altitude Cardiopulmonary Physiology, Pathophysiology and Disease, Volume 52, Number 6, (May/June 2010), published by Elsevier.

Katrina Saling | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>