Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of hereditary blindness discovered - RUB Medicine: new protein identified

22.06.2011
Gene mutations cause retinal degeneration

Medics at the RUB have found the cause of hereditary, progressive blindness: they have identified the previously unknown protein CCDC66, the loss of which initially leads to night blindness and in due course usually results in complete blindness.

The researchers from the Department of Human Genetics led by Prof. Dr. Jörg T. Epplen have demonstrated this using a mouse model. Initially the occurrence of progressive retinal degeneration - progressive retinal atrophy, in man called retinitis pigmentosa - had been identified in Schapendoes dogs.

Retinitis pigmentosa is the most common hereditary disease which causes blindness in humans. The researchers report on their findings, in “Human Molecular Genetics”.

Genetic test developed

Based on the new findings, the researchers from Bochum have developed a genetic test for diagnosis in this breed of dogs that can also be used predictively in breeding. Schapendoes dogs are originally a Dutch breed of herding dog, which is now kept mainly in Holland, Germany, Northern Europe and North America. However, the research results are also potentially significant for people. The scientists are currently investigating whether mutations of the CCDC66 gene could also be responsible for some retinitis pigmentosa patients.

Mouse model: disease progression in months instead of years

“Since at the beginning of the work, the importance of the CCDC66 protein in the organism was completely unknown, in collaboration with Dr. Thomas Rülicke (Vienna) and Prof. Dr. Saleh Ibrahim (Lübeck), we developed a mouse model with a defect in the corresponding gene” explained Prof. Epplen. The aim was initially to obtain basic information about the consequences of the CCDC66 deficiency in order to draw conclusions on the physiological function of the protein. “Fortunately, the mice showed exactly the expected defect of slow progressive impaired vision”, said Epplen. “Along with Dr. Elisabeth Petrasch-Parwez (RUB) and Prof. Dr. Jan Kremers (Erlangen), we were able to anatomically and functionally study the entire development of the visual defect in the mouse in just a few months, whereas the progress takes years in humans and dogs.” In this interdisciplinary project, the researchers have precisely documented and characterised the progress of retinal degeneration. Epplen: “Interestingly, the CCDC66 protein is, for example, only localised in certain structures of the rods”.

Studies continue

The insights gained from the studies of the working group can now be applied in order to better understand the processes that cause this inherited disorder. The mouse model will be studied further, as the researchers said: “with regard to malfunctions of the brain, but naturally, above all as a prerequisite for future therapeutic trials in retinitis pigmentosa.”

Bibliographic record

Ccdc66 null mutation causes retinal degeneration and dysfunction. Gerding WM, Schreiber S, Schulte-Middelmann T, de Castro Marques A, Atorf J, Akkad DA, Dekomien G, Kremers J, Dermietzel R, Gal A, Rülicke T, Ibrahim S, Epplen JT, Petrasch-Parwez E. Hum. Mol. Genet. (2011) first published online June 16, 2011 doi:10.1093/hmg/ddr282

Further information

Prof. Dr. Jörg T. Epplen, Human Genetics, Medical Faculty of the RUB, tel. 0234/32-23839, e-mail: joerg.t.epplen@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>