Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of hereditary blindness discovered - RUB Medicine: new protein identified

22.06.2011
Gene mutations cause retinal degeneration

Medics at the RUB have found the cause of hereditary, progressive blindness: they have identified the previously unknown protein CCDC66, the loss of which initially leads to night blindness and in due course usually results in complete blindness.

The researchers from the Department of Human Genetics led by Prof. Dr. Jörg T. Epplen have demonstrated this using a mouse model. Initially the occurrence of progressive retinal degeneration - progressive retinal atrophy, in man called retinitis pigmentosa - had been identified in Schapendoes dogs.

Retinitis pigmentosa is the most common hereditary disease which causes blindness in humans. The researchers report on their findings, in “Human Molecular Genetics”.

Genetic test developed

Based on the new findings, the researchers from Bochum have developed a genetic test for diagnosis in this breed of dogs that can also be used predictively in breeding. Schapendoes dogs are originally a Dutch breed of herding dog, which is now kept mainly in Holland, Germany, Northern Europe and North America. However, the research results are also potentially significant for people. The scientists are currently investigating whether mutations of the CCDC66 gene could also be responsible for some retinitis pigmentosa patients.

Mouse model: disease progression in months instead of years

“Since at the beginning of the work, the importance of the CCDC66 protein in the organism was completely unknown, in collaboration with Dr. Thomas Rülicke (Vienna) and Prof. Dr. Saleh Ibrahim (Lübeck), we developed a mouse model with a defect in the corresponding gene” explained Prof. Epplen. The aim was initially to obtain basic information about the consequences of the CCDC66 deficiency in order to draw conclusions on the physiological function of the protein. “Fortunately, the mice showed exactly the expected defect of slow progressive impaired vision”, said Epplen. “Along with Dr. Elisabeth Petrasch-Parwez (RUB) and Prof. Dr. Jan Kremers (Erlangen), we were able to anatomically and functionally study the entire development of the visual defect in the mouse in just a few months, whereas the progress takes years in humans and dogs.” In this interdisciplinary project, the researchers have precisely documented and characterised the progress of retinal degeneration. Epplen: “Interestingly, the CCDC66 protein is, for example, only localised in certain structures of the rods”.

Studies continue

The insights gained from the studies of the working group can now be applied in order to better understand the processes that cause this inherited disorder. The mouse model will be studied further, as the researchers said: “with regard to malfunctions of the brain, but naturally, above all as a prerequisite for future therapeutic trials in retinitis pigmentosa.”

Bibliographic record

Ccdc66 null mutation causes retinal degeneration and dysfunction. Gerding WM, Schreiber S, Schulte-Middelmann T, de Castro Marques A, Atorf J, Akkad DA, Dekomien G, Kremers J, Dermietzel R, Gal A, Rülicke T, Ibrahim S, Epplen JT, Petrasch-Parwez E. Hum. Mol. Genet. (2011) first published online June 16, 2011 doi:10.1093/hmg/ddr282

Further information

Prof. Dr. Jörg T. Epplen, Human Genetics, Medical Faculty of the RUB, tel. 0234/32-23839, e-mail: joerg.t.epplen@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>