Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cause of hereditary blindness discovered - RUB Medicine: new protein identified

Gene mutations cause retinal degeneration

Medics at the RUB have found the cause of hereditary, progressive blindness: they have identified the previously unknown protein CCDC66, the loss of which initially leads to night blindness and in due course usually results in complete blindness.

The researchers from the Department of Human Genetics led by Prof. Dr. Jörg T. Epplen have demonstrated this using a mouse model. Initially the occurrence of progressive retinal degeneration - progressive retinal atrophy, in man called retinitis pigmentosa - had been identified in Schapendoes dogs.

Retinitis pigmentosa is the most common hereditary disease which causes blindness in humans. The researchers report on their findings, in “Human Molecular Genetics”.

Genetic test developed

Based on the new findings, the researchers from Bochum have developed a genetic test for diagnosis in this breed of dogs that can also be used predictively in breeding. Schapendoes dogs are originally a Dutch breed of herding dog, which is now kept mainly in Holland, Germany, Northern Europe and North America. However, the research results are also potentially significant for people. The scientists are currently investigating whether mutations of the CCDC66 gene could also be responsible for some retinitis pigmentosa patients.

Mouse model: disease progression in months instead of years

“Since at the beginning of the work, the importance of the CCDC66 protein in the organism was completely unknown, in collaboration with Dr. Thomas Rülicke (Vienna) and Prof. Dr. Saleh Ibrahim (Lübeck), we developed a mouse model with a defect in the corresponding gene” explained Prof. Epplen. The aim was initially to obtain basic information about the consequences of the CCDC66 deficiency in order to draw conclusions on the physiological function of the protein. “Fortunately, the mice showed exactly the expected defect of slow progressive impaired vision”, said Epplen. “Along with Dr. Elisabeth Petrasch-Parwez (RUB) and Prof. Dr. Jan Kremers (Erlangen), we were able to anatomically and functionally study the entire development of the visual defect in the mouse in just a few months, whereas the progress takes years in humans and dogs.” In this interdisciplinary project, the researchers have precisely documented and characterised the progress of retinal degeneration. Epplen: “Interestingly, the CCDC66 protein is, for example, only localised in certain structures of the rods”.

Studies continue

The insights gained from the studies of the working group can now be applied in order to better understand the processes that cause this inherited disorder. The mouse model will be studied further, as the researchers said: “with regard to malfunctions of the brain, but naturally, above all as a prerequisite for future therapeutic trials in retinitis pigmentosa.”

Bibliographic record

Ccdc66 null mutation causes retinal degeneration and dysfunction. Gerding WM, Schreiber S, Schulte-Middelmann T, de Castro Marques A, Atorf J, Akkad DA, Dekomien G, Kremers J, Dermietzel R, Gal A, Rülicke T, Ibrahim S, Epplen JT, Petrasch-Parwez E. Hum. Mol. Genet. (2011) first published online June 16, 2011 doi:10.1093/hmg/ddr282

Further information

Prof. Dr. Jörg T. Epplen, Human Genetics, Medical Faculty of the RUB, tel. 0234/32-23839, e-mail:

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>