Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heightened level of amygdala activity may cause social deficits in autism

23.03.2009
Something strange is going on in the amygdala – an almond-shaped structure deep in the human brain – among people with autism.

Researchers at the University of Washington have discovered an increased pattern of brain activity in the amygdalas of adults with autism that may be linked to the social deficits that typically are associated with the disorder.

Previous research at the UW and elsewhere has shown that abnormal growth patterns in the amygdala are commonly found among young children diagnosed with autism.

The amygdala is popularly associated with the "fight-or-flight response" in dangerous situations. But it has other functions, including identifying faces and situations and evaluating social information such as emotions.

The new research shows that brain activation in adults with autism remains elevated long after similar brain regions of typically developed adults have stopped being activated when exposed to a series of pictures of human faces. A decrease in activation over time to the same type of information is called neural habituation and is connected with learning, according to Natalia Kleinhans, lead author of the new study and a UW research assistant professor of radiology.

"What we are seeing is hyperexcitability or overarousal of the amygdala, which suggests that neurons in the amygdala are firing more than expected," said Kleinhans, who is associated with the UW Autism Center.

"If you consider that habituation reflects learning in as simple a task as looking at a face, slowness to habituate in people with autism may contribute even more markedly to difficulty with more complex social interactions and social cognition. If the brain is not reacting typically to a static face with a neutral expression, you can imagine how difficult it may be for someone with autism to pick up more subtle social cues."

The National Institute of Child Health and Human Development and the National Institute of Mental Health funded the research, which appears in the online edition of The American Journal of Psychiatry.

The UW researchers used functional magnetic resonance imaging to examine brain activation in 19 individuals with autism and in a comparison group of 20 healthy adults. The subjects ranged in age from 18 to 44 and the two groups were matched for IQs in the low-normal range. Both groups had their brains scanned while they looked at series of faces with neutral expressions. Each face appeared on a screen for three seconds and occasionally a face would be repeated two consecutive times. When that happened subjects were instructed to push a button.

The scientists were interested in what happened in two brain regions, the amygdala and the fusiform gyrus, when the subjects viewed the faces. It turned out that the fusiform gyrus, which helps determine what kind of object a person is looking at – a face or a house, for example – showed no habituation in either group. But the differences were striking when it came to the amygdala.

"The differences we found were in the amygdala and specific to the amygdala," said Kleinhans. "They originated there and did not go across the brain."

She said one theory about autism is that when this hyperarousal occurs an individual misses important information. Those individuals with autism who had the most social impairment exhibited the highest levels of amygdala arousal.

"This is another piece of evidence that there is something wrong with the amygdala in autism that contributes to social impairment. These results help refine our understanding of functional abnormalities in autism and are a new way of thinking about social dysfunction in autism," said Kleinhans.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>