Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heightened level of amygdala activity may cause social deficits in autism

23.03.2009
Something strange is going on in the amygdala – an almond-shaped structure deep in the human brain – among people with autism.

Researchers at the University of Washington have discovered an increased pattern of brain activity in the amygdalas of adults with autism that may be linked to the social deficits that typically are associated with the disorder.

Previous research at the UW and elsewhere has shown that abnormal growth patterns in the amygdala are commonly found among young children diagnosed with autism.

The amygdala is popularly associated with the "fight-or-flight response" in dangerous situations. But it has other functions, including identifying faces and situations and evaluating social information such as emotions.

The new research shows that brain activation in adults with autism remains elevated long after similar brain regions of typically developed adults have stopped being activated when exposed to a series of pictures of human faces. A decrease in activation over time to the same type of information is called neural habituation and is connected with learning, according to Natalia Kleinhans, lead author of the new study and a UW research assistant professor of radiology.

"What we are seeing is hyperexcitability or overarousal of the amygdala, which suggests that neurons in the amygdala are firing more than expected," said Kleinhans, who is associated with the UW Autism Center.

"If you consider that habituation reflects learning in as simple a task as looking at a face, slowness to habituate in people with autism may contribute even more markedly to difficulty with more complex social interactions and social cognition. If the brain is not reacting typically to a static face with a neutral expression, you can imagine how difficult it may be for someone with autism to pick up more subtle social cues."

The National Institute of Child Health and Human Development and the National Institute of Mental Health funded the research, which appears in the online edition of The American Journal of Psychiatry.

The UW researchers used functional magnetic resonance imaging to examine brain activation in 19 individuals with autism and in a comparison group of 20 healthy adults. The subjects ranged in age from 18 to 44 and the two groups were matched for IQs in the low-normal range. Both groups had their brains scanned while they looked at series of faces with neutral expressions. Each face appeared on a screen for three seconds and occasionally a face would be repeated two consecutive times. When that happened subjects were instructed to push a button.

The scientists were interested in what happened in two brain regions, the amygdala and the fusiform gyrus, when the subjects viewed the faces. It turned out that the fusiform gyrus, which helps determine what kind of object a person is looking at – a face or a house, for example – showed no habituation in either group. But the differences were striking when it came to the amygdala.

"The differences we found were in the amygdala and specific to the amygdala," said Kleinhans. "They originated there and did not go across the brain."

She said one theory about autism is that when this hyperarousal occurs an individual misses important information. Those individuals with autism who had the most social impairment exhibited the highest levels of amygdala arousal.

"This is another piece of evidence that there is something wrong with the amygdala in autism that contributes to social impairment. These results help refine our understanding of functional abnormalities in autism and are a new way of thinking about social dysfunction in autism," said Kleinhans.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>