Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heightened level of amygdala activity may cause social deficits in autism

23.03.2009
Something strange is going on in the amygdala – an almond-shaped structure deep in the human brain – among people with autism.

Researchers at the University of Washington have discovered an increased pattern of brain activity in the amygdalas of adults with autism that may be linked to the social deficits that typically are associated with the disorder.

Previous research at the UW and elsewhere has shown that abnormal growth patterns in the amygdala are commonly found among young children diagnosed with autism.

The amygdala is popularly associated with the "fight-or-flight response" in dangerous situations. But it has other functions, including identifying faces and situations and evaluating social information such as emotions.

The new research shows that brain activation in adults with autism remains elevated long after similar brain regions of typically developed adults have stopped being activated when exposed to a series of pictures of human faces. A decrease in activation over time to the same type of information is called neural habituation and is connected with learning, according to Natalia Kleinhans, lead author of the new study and a UW research assistant professor of radiology.

"What we are seeing is hyperexcitability or overarousal of the amygdala, which suggests that neurons in the amygdala are firing more than expected," said Kleinhans, who is associated with the UW Autism Center.

"If you consider that habituation reflects learning in as simple a task as looking at a face, slowness to habituate in people with autism may contribute even more markedly to difficulty with more complex social interactions and social cognition. If the brain is not reacting typically to a static face with a neutral expression, you can imagine how difficult it may be for someone with autism to pick up more subtle social cues."

The National Institute of Child Health and Human Development and the National Institute of Mental Health funded the research, which appears in the online edition of The American Journal of Psychiatry.

The UW researchers used functional magnetic resonance imaging to examine brain activation in 19 individuals with autism and in a comparison group of 20 healthy adults. The subjects ranged in age from 18 to 44 and the two groups were matched for IQs in the low-normal range. Both groups had their brains scanned while they looked at series of faces with neutral expressions. Each face appeared on a screen for three seconds and occasionally a face would be repeated two consecutive times. When that happened subjects were instructed to push a button.

The scientists were interested in what happened in two brain regions, the amygdala and the fusiform gyrus, when the subjects viewed the faces. It turned out that the fusiform gyrus, which helps determine what kind of object a person is looking at – a face or a house, for example – showed no habituation in either group. But the differences were striking when it came to the amygdala.

"The differences we found were in the amygdala and specific to the amygdala," said Kleinhans. "They originated there and did not go across the brain."

She said one theory about autism is that when this hyperarousal occurs an individual misses important information. Those individuals with autism who had the most social impairment exhibited the highest levels of amygdala arousal.

"This is another piece of evidence that there is something wrong with the amygdala in autism that contributes to social impairment. These results help refine our understanding of functional abnormalities in autism and are a new way of thinking about social dysfunction in autism," said Kleinhans.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>