Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University scientist develops safe, quick technique for eliminating reblockage of arteries following angioplasty

09.03.2009
An easily implementable technique to avoid reblockage of arteries that have been cleared through angioplasty and stent insertion has been developed by researchers led by Prof. Boris Rubinsky of the Hebrew University of Jerusalem.

Angioplasty is the “gold-standard” treatment for acute myocardial infarction (heart attack), which is the result of abrupt interruption in blood supply to part of the beating heart, usually due to plaque-rupture in an atherosclerotic (hardened) coronary artery.

In angioplasty, a cardiologist dilates the blocked artery by inserting a balloon that is inflated at the point of blockage. This is usually followed by coronary stent implantation to protect the artery and prevent restenosis (reocclusion or reblockage). However, the procedure damages the arterial wall, and therefore restonosis of the dilated artery remains a major clinical problem in cardiology, as well as in other fields of clinical medicine.

Since heart disease remains the leading cause of mortality in the western world, the technique developed by Prof. Rubinsky’s research teams offer a highly valuable tool for dealing with cardiology patients. Prof. Rubinsky is the director of the Center for Bioengineering in the Service of Humanity and Society at the Rachel and Selim Benin School of Computer Science and Engineering of the Hebrew University of Jerusalem and a professor in the graduate school at the University of California, Berkeley.

The technique employs the biophysical phenomenon of irreversible electroporation (IRE). IRE destroys cells within seconds, using very short electric field pulses. It causes no damage to structures other than the cells themselves. Compared with other technologies for local destruction of cells and tissue, IRE is simple and does not require special training of the medical team.

In IRE, electrical fields are applied across targeted cells, penetrating the cell membranes, This process leads to cell death, since the electrical fields cause permanent damage to the membranes and the consequent loss of cell stability. The electrical fields damage only the cell membranes, with no collateral damage to other structures in the treated area. While the phenomenon of irreversible electroporation was known for decades, a team led by Prof. Rubinsky developed a new mode of application that affects only selected molecules in tissue, and as a consequence it has become only recently rigorously considered in medicine for various applications of tissue removal.

In an article published March 9 in the journal PLoS ONE, Prof. Rubinsky's team demonstrated that IRE can efficiently, safely and quickly destroy the cells responsible for the restenosis phenomenon in rats. In the study, IRE successfully destroyed almost all of those cells in less than 23 seconds, with no damage to any other structures. Clinical trials on humans for restenosis treatment are planned in the near future.

IRE has been recently used for the first time on human subjects in Melbourne, Australia, for the treatment of prostate, liver and lung tumors. Clinical trials for follow-up through IRE of angioplasty treatments are planned for the near future. Prof. Jay Lavee, head of the heart transplant unit at the Sheba Medical Center, Tel Hashomer, is cooperating with Prof. Rubinsky in development of the IRE technique for heart patients.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904. Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>