Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat for wounds – water-filtered infrared-A (wIRA) assists wound healing

30.06.2016

Water-filtered infrared-A (wIRA) is a special form of heat radiation with high tissue penetration and a low thermal load to the skin surface, see Figure. wIRA promotes healing of acute and chronic wounds both by thermal and thermic as well as by non-thermal and non-thermic cellular effects. wIRA corresponds to the major part of the sun’s heat radiation, which reaches the surface of the Earth in moderate climatic zones filtered by water and water vapour of the atmosphere.

The results of 7 clinical studies (the largest study with 400 patients) about water-filtered infrared-A (wIRA) for wound healing have been published on 29.06.2016 as comprehensive review in the interdisciplinary e-journal "GMS German Medical Science" of the Association of Scientific Medical Societies (AWMF) [1].


Comparison of the spectra of the Sun and of two different halogen radiators without water-filter: the three radiators with their spectral irradiances cause the same skin surface temperature

G. Hoffmann

The six included randomized controlled clinical trials compare a combination of high standard care plus wIRA treatment vs. high standard care alone.

wIRA increases tissue temperature (+2.7°C at a tissue depth of 2 cm), tissue oxygen partial pressure (+32% at a tissue depth of 2 cm) and tissue perfusion.
wIRA promotes normal as well as disturbed wound healing: wIRA diminishes inflammation and exudation, wIRA promotes infection defense and regeneration, and wIRA alleviates pain. During 230 irradiations without any exception an alleviation of pain was observed with a substantially reduced need for analgesics (52–69% less in the three groups with wIRA compared to the three control groups without wIRA after major visceral surgery, nearly 60% less need for analgesics in chronic venous stasis ulcers).

Further effects are:

- Faster reduction of wound area (in severely burned children: 90% reduction of wound size after 9 vs. 13 days, after 9 days approx. 89% vs. approx. 49% reduction in wound area, complete wound closure of chronic venous stasis ulcers after 14 vs. 42 days).

- Better overall evaluation of wound healing.

- Better overall evaluation of the effect of irradiation.

- Better cosmetic result.

- Lower wound infection rate (single preoperative irradiation: 5% vs. 12% wound infections in total, of these: late wound infections (postoperative days 9-30) 1.7% vs. 7.7%).

- Shorter hospital stay (discharge after 9 vs. 11 postoperative days).

The effects of wIRA are compiled with extensive numerical data in a table of several
pages and illustrated with figures.
Water-filtered infrared-A is a useful complement for the treatment of acute and chronic wounds.

Publication (freely available):
[1] Hoffmann G, Hartel M, Mercer JB. Heat for wounds – water-filtered infrared-A (wIRA) for wound healing – a review. GMS Ger Med Sci. 2016;14:Doc08.
DOI: 10.3205/000235, URN: urn:nbn:de:0183-0002352
Publication online freely available as PDF and shtml from:
http://www.egms.de/en/journals/gms/2016-14/000235.shtml

Extensive presentation of a variety of applications of water-filtered infrared-A (including applications besides wound healing) in German language is freely available from:
http://www.waerme-therapie.com/fachartikel.html

Weitere Informationen:

http://www.egms.de/en/journals/gms/2016-14/000235.shtml as HTML-file
http://www.egms.de/static/pdf/journals/gms/2016-14/000235.pdf as PDF-file

Wolfgang Müller | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>