Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart rate may predict survival and brain function in comatose cardiac arrest survivors

20.10.2014

Researchers may have developed a way to potentially assist prognostication in the first 24 hours after out-of-hospital cardiac arrest (OHCA) when patients are still in a coma. Their findings are revealed today at Acute Cardiovascular Care 2014 by Dr Jakob Hartvig Thomsen from Copenhagen, Denmark.

Acute Cardiovascular Care is the annual meeting of the Acute Cardiovascular Care Association (ACCA) of the European Society of Cardiology (ESC) and takes place 18-20 October in Geneva, Switzerland.


This figure shows the 180-day mortality rate by experience of sinus bradycardia during therapeutic hypothermia.

Credit: Jakob Hartvig Thomsen

Dr Thomsen said: "When we talk to relatives and friends immediately after a cardiac arrest we often tell them that we're not able to say much about the prognosis for their Dad, Mom, friend, etc, for the next 3 to 4 days. This is incredibly distressing and loved ones are desperate for more information."

He added: "Therapeutic hypothermia is used in comatose survivors of OHCA to protect them from brain damage. Current recommendations say that prognostication should not be made until 72 hours after hypothermia when patients have returned to normothermia and the sedation has worn off.1 The prognostic tools presently available are not reliable until after this 72 hour period."

Dr Thomsen continued: "During hypothermia some patients lower their heart rate, which is called bradycardia. We hypothesised that this is a normal physiological reaction and that these patients may have less severe brain injury after their arrest and therefore lower mortality."

The study was conducted in the intensive care unit at Copenhagen University Hospital during 2004-2010 and was supported by the EU Interreg IV A programme. It included 234 comatose survivors of OHCA who underwent the hospital's standard 24 hour therapeutic hypothermia protocol. Heart rhythm was measured hourly and sinus bradycardia (defined as less than 50 heart beats per minute) was used to stratify the patients. The primary endpoint was 180 day mortality.

The investigators found that patients who experienced sinus bradycardia during therapeutic hypothermia had a 17% 180 day mortality rate compared to 38% in those with no sinus bradycardia (p<0.001) (figure 1), with a hazard ratio (HR) of 0.38. Sinus bradycardia during therapeutic hypothermia remained an independent predictor of lower 180 day mortality with a HR of 0.51 after adjusting for known confounding factors including sex, age, comorbidity, witnessed arrest and bystander CPR.

Dr Thomsen said: "Patients with sinus bradycardia during therapeutic hypothermia had a 50-60% lower mortality rate at 180 days than those with no sinus bradycardia. We also found that sinus bradycardia was directly associated with a better neurological status 180 days after the arrest."

Few patients are in sinus bradycardia when they arrive at the intensive care unit (a period called the induction phase). However the proportion rises during hypothermia to almost 50%, and then declines during the rewarming phase.

Dr Thomsen said: "We speculated that this proportion of patients who develop sinus bradycardia during hypothermia would have better brain function and a lower mortality rate, and that was what we found. "

He added: "Now when we observe that a patient experiences sinus bradycardia below 50 beats per minute within the first 24 hours we can tell families that their relative may have a chance of recovery."

Dr Thomsen continued: "There is a lot of discussion about defining criteria to identify patients we should stop treating when a vegetative state is inevitable. We shouldn't give up on patients who still have a chance so this is an area in which we need to be very certain. Our findings provide an early marker of patients who may do well. Hopefully in the future, together with other tools, we will be able to differentiate between those with a very good or very poor prognosis so we can prioritise intensive care resources."

He concluded: "We are currently validating our findings by conducting the same analysis in the 950 patients included in the Targeted Temperature Management trial which was conducted in 36 intensive care units."

Jacqueline Partarrieu | Eurek Alert!
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>