Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heart rate may predict survival and brain function in comatose cardiac arrest survivors


Researchers may have developed a way to potentially assist prognostication in the first 24 hours after out-of-hospital cardiac arrest (OHCA) when patients are still in a coma. Their findings are revealed today at Acute Cardiovascular Care 2014 by Dr Jakob Hartvig Thomsen from Copenhagen, Denmark.

Acute Cardiovascular Care is the annual meeting of the Acute Cardiovascular Care Association (ACCA) of the European Society of Cardiology (ESC) and takes place 18-20 October in Geneva, Switzerland.

This figure shows the 180-day mortality rate by experience of sinus bradycardia during therapeutic hypothermia.

Credit: Jakob Hartvig Thomsen

Dr Thomsen said: "When we talk to relatives and friends immediately after a cardiac arrest we often tell them that we're not able to say much about the prognosis for their Dad, Mom, friend, etc, for the next 3 to 4 days. This is incredibly distressing and loved ones are desperate for more information."

He added: "Therapeutic hypothermia is used in comatose survivors of OHCA to protect them from brain damage. Current recommendations say that prognostication should not be made until 72 hours after hypothermia when patients have returned to normothermia and the sedation has worn off.1 The prognostic tools presently available are not reliable until after this 72 hour period."

Dr Thomsen continued: "During hypothermia some patients lower their heart rate, which is called bradycardia. We hypothesised that this is a normal physiological reaction and that these patients may have less severe brain injury after their arrest and therefore lower mortality."

The study was conducted in the intensive care unit at Copenhagen University Hospital during 2004-2010 and was supported by the EU Interreg IV A programme. It included 234 comatose survivors of OHCA who underwent the hospital's standard 24 hour therapeutic hypothermia protocol. Heart rhythm was measured hourly and sinus bradycardia (defined as less than 50 heart beats per minute) was used to stratify the patients. The primary endpoint was 180 day mortality.

The investigators found that patients who experienced sinus bradycardia during therapeutic hypothermia had a 17% 180 day mortality rate compared to 38% in those with no sinus bradycardia (p<0.001) (figure 1), with a hazard ratio (HR) of 0.38. Sinus bradycardia during therapeutic hypothermia remained an independent predictor of lower 180 day mortality with a HR of 0.51 after adjusting for known confounding factors including sex, age, comorbidity, witnessed arrest and bystander CPR.

Dr Thomsen said: "Patients with sinus bradycardia during therapeutic hypothermia had a 50-60% lower mortality rate at 180 days than those with no sinus bradycardia. We also found that sinus bradycardia was directly associated with a better neurological status 180 days after the arrest."

Few patients are in sinus bradycardia when they arrive at the intensive care unit (a period called the induction phase). However the proportion rises during hypothermia to almost 50%, and then declines during the rewarming phase.

Dr Thomsen said: "We speculated that this proportion of patients who develop sinus bradycardia during hypothermia would have better brain function and a lower mortality rate, and that was what we found. "

He added: "Now when we observe that a patient experiences sinus bradycardia below 50 beats per minute within the first 24 hours we can tell families that their relative may have a chance of recovery."

Dr Thomsen continued: "There is a lot of discussion about defining criteria to identify patients we should stop treating when a vegetative state is inevitable. We shouldn't give up on patients who still have a chance so this is an area in which we need to be very certain. Our findings provide an early marker of patients who may do well. Hopefully in the future, together with other tools, we will be able to differentiate between those with a very good or very poor prognosis so we can prioritise intensive care resources."

He concluded: "We are currently validating our findings by conducting the same analysis in the 950 patients included in the Targeted Temperature Management trial which was conducted in 36 intensive care units."

Jacqueline Partarrieu | Eurek Alert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>