Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart cells respond to stiff environments

17.03.2014

Proteins associated with the regulation of organ size and shape have been found to respond to the mechanics of the microenvironment in ways that specifically affect the decision of adult cardiac stem cells to generate muscular or vascular cells.

Cell development for specific functions — so-called cell differentiation — is crucial for maintaining healthy tissue and organs. Two proteins in particular — the Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1 or TAZ) — have been linked with control of cell differentiation in the tissues of the lymphatic, circulatory, intestinal and neural systems, as well as regulating embryonic stem cell renewal.


Schematic illustrating how mechanical properties of substrates affect where YAP/TAZ proteins are located in cells (left) and how this affects cell development for specific functions (right).

An international collaboration of researchers has now identified that changes in the elasticity and nanotopography of the cellular environment of these proteins can affect how heart stem cells differentiate with implications for the onset of heart diseases. 

Researchers at the International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) collaborated with researchers in Finland, Italy, the Netherlands, Saudi Arabia and the Czech Republic in the study. 

They engineered YAP and TAZ proteins that expressed green fluorescent protein so that their location within the cell could be tracked. They then prepared cell substrates from smart biomaterials displaying dynamic control of elasticity and nanostructure with temperature.

“Our data provide the first evidence for YAP/TAZ shuttling activity between the nucleus and the cytoplasm being promptly activated in response to dynamic modifications in substrate stiffness or nanostructure,” explain the researchers. 

Observations of gene expression highlighted the key role of YAP/TAZ proteins in cell differentiation. In further investigations on the effect of substrate stiffness they also found that cell differentiation was most efficient for substrates displaying stiffness similar to that found in the heart. 

The authors suggest that understanding the effects of microenvironment nanostructure and mechanics on how these proteins affect cell differentiation could be used to aid processes that maintain a healthy heart. 

They conclude, “These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design.”

Contact Information
International Center of Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
1-1 Namiki Tsukuba, Ibaraki 305-0044 JAPAN
Phone: +81-29-860-4710
E-mail: mana-pr@ml.nims.go.jp

Publisher
International Center for Materials Nanoarchitectonics (WPI-MANA)
Address: 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
URL: http://www.nims.go.jp/mana/

Associated links

Journal information

Reference
Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. Diogo Mosqueira,1,2,† Stefania Pagliari,1,3,† Koichiro Uto,1 Mitsuhiro Ebara,1 Sara Romanazzo,1 Carmen Escobedo-Lucea,4 Jun Nakanishi,1 Akiyoshi Taniguchi,1 Ornella Franzese,5 Paolo Di Nardo,6 Marie Jose´ Goumans,7 Enrico Traversa,8 Perpetua Pinto-do-O,2 Takao Aoyagi,1,‡,* and Giancarlo Forte1,9,†,0* 2014 ACS NANO; DOI: 10.1021/nn4058984.

Affiliations
1. Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
2. Instituto de Engenharia Biomedica-INEB, Universidade do Porto, Porto, Portugal
3. Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
4. Academy of Finland Research Fellow, Division of Pharmaceutical Biosciences/Center for Drug Research (CDR), University of Helsinki, Helsinki, Finland
5. Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
6. Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
7. Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
8. King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
9. International Clinical Research Center (ICRC), Integrated Center of Cellular Therapy and Regenerative Medicine, St. Anne's University Hospital, Brno, Czech Republic.
0. Present address: International Clinical Research Center (ICRC), Integrated Center of Cellular Therapy and Regenerative Medicine, St. Anne's University Hospital, Brno, Czech Republic.
†These authors contributed equally.
‡These authors contributed equally.
* Corresponding authors

Adarsh Sandhu | Research SEA
Further information:
http://www.researchsea.com
http://www.nims.go.jp

Further reports about: Heart MANA Medicine Nanoarchitectonics environments nanostructure proteins stiff stiffness

More articles from Health and Medicine:

nachricht UV light robot to clean hospital rooms could help stop spread of 'superbugs'
15.04.2015 | Texas A&M University

nachricht Heart cells regenerated in mice
14.04.2015 | Weizmann Institute of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>